Phage therapy of corrosion-producing bacterium Stenotrophomonas maltophilia using isolated lytic bacteriophages

2017 ◽  
Vol 64 (6) ◽  
pp. 607-612 ◽  
Author(s):  
Arezoo Pedramfar ◽  
Keivan Beheshti Maal ◽  
Sayed Hossein Mirdamadian

Purpose Corrosion-producing microorganisms have different physiology and include sulfate-reducing bacteria, iron oxidizers and magnesium oxidizers. Biocorrosion has been seen in various industries, especially the petrochemicals and oil industries. One proposal to solve this problem is the use of bacteriophages to treat the bacteria-caused corrosion. The aims of this study were isolation and identification of corrosion-producing bacteria from petroleum pipeline corrosion as well as finding their specific bacteriophages for phage therapy purposes. Design/methodology/approach The sample pipes with the corrosion were obtained from the Gandomkar petroleum pipeline station, Chaharmahal and Bakhtiari, Iran. For screening the corrosion-producing bacteria, the rusted pipe samples were cultured in a selective culture medium, manganese agar. The purified individual colonies were subjected to molecular examinations. For isolating bacteriophages from silversmithing workshops wastewater in Isfahan, whole plate titration methods and transmission electron microscopy were used to isolate and detect phages. Findings The cultivation of corrosion-based material on manganese agar after 18 hours incubation at 30°C resulted in the isolation of cream-colored colonies. The microscopic examinations showed Gram-negative coccobacilli. Based on molecular examinations, the isolated bacteria were identified as Stenotrophomonas maltophilia strain PBM-IAUF-2 with Genebank accession number of KU145278.1. The found bacteriophage was related to the Siphoviridae family of phages. Originality/value This paper is the first report of isolation and identification of corrosion-producing bacteria and its specific lytic phages from Gandomkar petroleum pipeline station, Chaharmahal and Bakhtiari, Iran. The biological procedures for preventing the microbial corrosion could be an asset and considered as a potential in the petroleum and industrial microbiology. Phage therapy is considered as one of the economical methods for reducing the biocorrosion.

2016 ◽  
Vol 63 (4) ◽  
pp. 269-274 ◽  
Author(s):  
Lina Qiu ◽  
Yanan Mao ◽  
Aijun Gong ◽  
Weiwei Zhang ◽  
Yanqiu Cao ◽  
...  

Purpose Bdellovibrio bacteriovorus is a gram-negative predatory bacterium which can potentially inhibit microbiologically influenced corrosion by preying on sulfate-reducing bacteria (SRB). However, no researches about the inhibition are reported according to the authors’ knowledge. The purpose of this paper was to investigate the Inhibition effect of B. bacteriovorus on the corrosion of X70 pipeline steel induced by SRB. Design/methodology/approach The effect of B. bacteriovorus on the growth of SRB was studied by measuring the optical density at 600 nm (OD600) and sulfate concentration in culture medium. X70 pipeline steel was used as the test material to investigate the anti-corrosion effect of B. bacteriovorus on SRB by conducting electrochemical analysis (including Tafel polarization curves and electrochemical impendence spectroscopy) and weight loss measurement. Findings B. bacteriovorus could inhibit the growth of SRB in culture medium by its predation on SRB, which led to decrease of OD600 value and increase of sulfate concentration. The results of electrochemical analysis indicated that B. bacteriovorus had positive inhibition efficiencies on SRB-induced corrosion of X70 pipeline steel. Moreover, corrosion rate of X70 pipeline steel was declined from 19.17 to 3.75 mg·dm-2·day-1 by the presence of B. bacteriovorus. Originality/value This is the first report about using B. bacteriovorus to inhibit the corrosion induced by SRB. Compared to other anti-corrosion methods, the microbial inhibition methods exhibit more considerable application value due to its low cost, high efficiency and non-pollution.


2020 ◽  
Vol 82 (5) ◽  
pp. 11-20
Author(s):  
D.R. Abdulina ◽  
◽  
L.M. Purish ◽  
G.O. Iutynska ◽  
◽  
...  

The studies of the carbohydrate composition of the sulfate-reducing bacteria (SRB) biofilms formed on the steel surface, which are a factor of microbial corrosion, are significant. Since exopolymers synthesized by bacteria could activate corrosive processes. The aim of the study was to investigate the specificity of commercial lectins, labeled with colloidal gold to carbohydrates in the biofilm exopolymeric matrix produced by the corrosive-relevant SRB strains from man-caused ecotopes. Methods. Microbiological methods (obtaining of the SRB biofilms during cultivation in liquid Postgate B media under microaerophilic conditions), biochemical methods (lectin-binding analysis of 10 commercial lectins, labeled with colloidal gold), transmission electron microscopy using JEM-1400 JEOL. Results. It was shown using transmission electron microscopy that the binding of lectins with carbohydrates in the biofilm of the studied SRB strains occurred directly in the exopolymerіс matrix, as well as on the surfaces of bacterial cells, as seen by the presence of colloidal gold particles. For detection of the neutral carbohydrates (D-glucose and D-mannose) in the biofilm of almost all studied bacterial strains PSA lectin was the most specific. This lectin binding in biofilms of Desulfotomaculum sp. К1/3 and Desulfovibrio sp. 10 strains was higher in 90.8% and 94.4%, respectively, then for ConA lectin. The presence of fucose in the SRB biofilms was detected using LABA lectin, that showed specificity to the biofilm EPS of all the studied strains. LBA lectin was the most specific to N-аcetyl-D-galactosamine for determination of amino sugars in the biofilm. The amount of this lectin binding in D. vulgaris DSM644 biofilm was 30.3, 10.1 and 9.3 times higher than SBA, SNA and PNA lectins, respectively. STA, LVA and WGA lectins were used to detect the N-acetyl-Dglucosamine and sialic acid in the biofilm. WGA lectin showed specificity to N-acetyl-D-glucosamine in the biofilm of all the studied SRB; maximum number of bounded colloidal gold particles (175 particles/μm2) was found in the Desulfotomaculum sp. TC3 biofilm. STA lectin was interacted most actively with N-acetyl-D-glucosamine in Desulfotomaculum sp. TC3 and Desulfomicrobium sp. TC4 biofilms. The number of bounded colloidal gold particles was in 9.2 and 7.4 times higher, respectively, than using LVA lectin. The lowest binding of colloidal gold particles was observed for LVA lectin. Conclusions. It was identified the individual specificity of the 10 commercial lectins to the carbohydrates of biofilm matrix on the steel surface, produced by SRB. It was estimated that lectins with identical carbohydrates specificity had variation in binding to the biofilm carbohydrates of different SRB strains. Establishing of the lectin range selected for each culture lead to the reduction of the scope of studies and labor time in the researching of the peculiarities of exopolymeric matrix composition of biofilms formed by corrosiverelevant SRB.


2011 ◽  
Vol 368-373 ◽  
pp. 42-47
Author(s):  
Fu Shao Li ◽  
Mao Zhong An ◽  
Dong Xia Duan

Corrosion behaviors of low nickel alloy high strength steel (LNAHSS) was studied by electrochemical impedance spectroscopy and scanning electron microscopy when the coupons of LNAHSS were exposed to the seawater culture media. As the results, LNAHSS was uniformly corroded in the fresh sterilized culture medium in a mode of active dissolution; in the culture medium with sulfate-reducing bacteria (SRB), LNAHSS was protected by the iron sulfides layer to some extent in the early stage of exposure, but severely localized corrosion subsequently occurred resulting from the localized breakdown of iron sulfides layer. So, in risks estimation, special precautions should be taken when LNAHSS serves in the environments containing SRB as the localized area can become the tress raiser.


2018 ◽  
Vol 65 (1) ◽  
pp. 46-52
Author(s):  
Fengling Xu ◽  
Zhenghui Qiu ◽  
Ri Qiu ◽  
Jiadong Yang ◽  
Cunguo Lin

Purpose For mitigating biocorrosion induced by sulfate-reducing bacteria (SRB) in seawater, the zwitterionic molecule layer (ZML) of poly (sulfobetaine methacrylate) is grafted onto B10 surface by chemical vapor deposition and surface-initiated atom transfer radical polymerization. Design/methodology/approach Energy-dispersive spectroscopy-attenuated total reflectance Fourier transform infrared spectroscopy and static contact angle measurements are used to characterize the as-formed layer. Findings After surface modification, B10 can significantly reduce SRB adhesion, demonstrating the good antifouling property. Further, the biocorrosion inhibition is investigated by potentiodynamic polarization and electrochemical impedance spectroscopy, indicating that ZML exhibits high resistance to biocorrosion with inhibition efficiency of approximately 90 per cent. Originality/value ZML performs a dual feature, i.e. antifouling film and corrosion inhibitor, for the biocorrosion inhibition.


2015 ◽  
Vol 814 ◽  
pp. 625-630
Author(s):  
Dong Xia Duan ◽  
Cun Guo Lin ◽  
Guang Zhou Liu ◽  
Ping Yao

Sulfate reducing bacteria (SRB) are traditionally considered as anaerobic organism. In this paper, the potential of sulfate reducing bacteria to cause mild steel corrosion under aerobic situation was investigated. Natural biopolymer agar and sulfate reducing bacteria cells were used to produce artificial biofilm. Micro-sensors were used to investigate the microenvironment in artificial biofilm. Environmental scanning electron microscopy and energy dispersive spectroscopy were used to study mild steel corrosion covered by artificial biofilm. The results indicated that SRB could grow and reduce sulfate both in suspension and in biofilm. The hydrogen sulfide produced by SRB and mild steel corrosion were influenced by the nutrients in the environment. The concentration of H2S in SRB biofilm exposed to culture medium was as twenty times as that exposed to marine water. The main corrosion product of mild steel in culture medium was iron sulfide, whereas the main product of mild steel in marine water was iron oxide.


2016 ◽  
Vol 63 (6) ◽  
pp. 445-451
Author(s):  
Yanan Wu ◽  
Hongfang Liu ◽  
Bijuan Zheng ◽  
Shuang Qin ◽  
Lei Chen

Purpose The purpose of this paper was to study some effective evaluation methods for the biocide performance on sulfate-reducing bacteria (SRB) biofilm. Design/methodology/approach The most probable number method, electrochemical impedance spectroscopy (EIS) measurements, scanning electron microscopy (SEM), three-dimensional (3D) photos and epifluorescent microscopy were used in this study. Findings The results showed that the minimum inhibitory concentrations and minimum bactericidal concentrations of them to sessile SRB were greatly more than planktonic SRB. The EIS of the two biocides indicated that the biofilm exposed to higher concentrations of biocide were much more compact and flat, which perfectly coincided with the SEM, 3D photos and the epifluorescent microscopies. Originality/value In this paper, it, thus, appears that these methods evaluating biocide performance on the SRB biofilm were really effective by comparing the performance of bis-quaternary ammonium salt (BAQS) and tetrakis hydroxymethyl phosphonium sulfate.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 752 ◽  
Author(s):  
Ivan Kushkevych ◽  
Věra Kotrsová ◽  
Dani Dordević ◽  
Leona Buňková ◽  
Monika Vítězová ◽  
...  

The gut microbiota is a complex component of humans that depends on diet, host genome, and lifestyle. The background: The study purpose is to find relations between nutrition, intestinal lactic acid bacteria (LAB) from various environments (human, animal intestine, and yogurt) and sulfate-reducing microbial communities in the large intestine; to compare kinetic growth parameters of LAB; and to determine their sensitivity to different concentration of hydrogen sulfide produced by intestinal sulfate-reducing bacteria. Methods: Microbiological (isolation and identification), biochemical (electrophoresis), molecular biology methods (DNA isolation and PCR analysis), and statistical processing (average and standard error calculations) of the results were used. The results: The toxicity of hydrogen sulfide produced by sulfate-reducing bacteria, the survival of lactic acid bacteria, and minimal inhibitory concentrations (MIC) were determined. The measured hydrogen sulfide sensitivity values were the same for L. paracasei and L. reuteri (MIC > 1.1 mM). In addition, L. plantarum and L. fermentum showed also a similar sensitivity (MIC > 0.45 mM) but significantly (p < 0.05) lower than L. reuteri and L. paracasei (1.1 > 0.45 mM). L. paracasei and L. reuteri are more sensitive to hydrogen sulfide than L. fermentum and L. plantarum. L. pentosus was sensitive to the extremely low concentration of H2S (MIC > 0.15 mM). Conclusions: The Lactobacillus species were significantly sensitive to hydrogen sulfide, which is a final metabolite of intestinal sulfate-reducing bacteria. The results are definitely helpful for a better understanding of complicated interaction among intestinal microbiota and nutrition.


2013 ◽  
Vol 79 (20) ◽  
pp. 6228-6235 ◽  
Author(s):  
Olga B. Gutiérrez Acosta ◽  
Norman Hardt ◽  
Bernhard Schink

ABSTRACTAcetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducerDesulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg−1protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria.


Sign in / Sign up

Export Citation Format

Share Document