The effects of Cl− and direct stray current on soil corrosion of three grounding grid materials

2020 ◽  
Vol 67 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Zhiping Zhu ◽  
Chun Shi ◽  
Yu Zhang ◽  
Zhifeng Liu

Purpose The purpose of this paper is to study the effects of Cl− and direct stray current on the soil corrosion of three grounding grid materials. Design/methodology/approach The electrochemical corrosion properties of three grounding grid materials, which include the Q235 steel, Q235 galvanized flat steel and copper, were measured by means of the weak polarization curve method and electrochemical impedance spectroscopy; the corrosion rate of specimens was calculated using the weight loss method; and the specimen surfaces were characterized using the scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction analysis. Findings Results showed that both factors, Cl− and direct stray current, can accelerate the corrosion rate of grounding grid materials. The magnitude of DC stray current density affected the mass transfer type and response frequency of the anode and cathode reaction of grounding materials, while the Cl− contents of the soil only affect the mass transfer rate of the electrode material from the electrochemical impedance spectroscopy diagrams. The electric field generated by the DC stray current caused Cl− directed migration. The larger the DC stray current density, the greater the diffusion process and the greater the weight loss rate of the grounding grid materials that would have a logarithmic relationship with the Cl− content at the same DC stray current density. The corrosion resistance of the three materials is copper > Q235 galvanized flat steel > Q235 flat steel. Originality/value The paper provides information regarding the relationship among Cl−, direct stray current and corrosion of three grounding grid materials by means of electrochemical impedance spectroscopy. Meanwhile the weight loss rate is the logarithmic relationship with the Cl− content, which is useful for understanding the corrosion mechanism of Q235 steel, Q235 galvanized flat steel and copper under the condition of Cl− and direct stray current in soil.

2017 ◽  
Vol 64 (1) ◽  
pp. 23-35 ◽  
Author(s):  
Mohammed Elalaoui Belghiti ◽  
Ayssar Nahlé ◽  
Abdeslam Ansari ◽  
Yasser Karzazi ◽  
S. Tighadouini ◽  
...  

Purpose This paper aims to study the inhibition effect of 2-pyridinealdazine on the corrosion of mild steel in an acidic medium. The inhibition effect was studied using weight loss, electrochemical impedance spectroscopy, and Tafel polarization measurements. Design/methodology/approach Weight loss measurements, potentiodynamic tests, electrochemical impedance spectroscopy, X-ray diffraction and spectral and conformational isomers analysis of A (E-PAA) and B (Z-PAA) were performed were investigated. Findings 2-pyridinealdazine (PAA) acts as a good inhibitor for the corrosion of steel in 2.0 M H3PO4. The inhibition efficiency increases with an increase in inhibitor concentration but decreases with an increase in temperature. Originality/value This paper is intended to be added to the family of azines which are highly efficient inhibitors and can be used in the area of corrosion prevention and control.


2017 ◽  
Vol 64 (5) ◽  
pp. 563-572 ◽  
Author(s):  
Asmae Bouoidina ◽  
Mehdi Chaouch ◽  
Abdelfattah Abdellaoui ◽  
Amal Lahkimi ◽  
Belkheir Hammouti ◽  
...  

Purpose The inhibition effect of Foeniculum vulgare seeds’ (FVS) extract on the corrosion of mild steel in acidic medium was studied using weight loss, electrochemical impedance spectroscopy and Tafel polarization, as well as the surface morphology of the mild steel. Design/methodology/approach Weight loss measurements, potentiodynamic tests, electrochemical impedance spectroscopy studies and gas chromatography/mass spectrometry and scanning electron microscopy analysis of FVS extract were performed. Findings FVS extract acts as a good inhibitor for the corrosion of mild steel in 1.0 M HCl. The inhibition efficiency increases with the increase in inhibitor concentration but decreases with the increase of temperature. Practical implications FVS extract was observed to play an important role in the corrosion inhibition of mild steel in acidic solution. Originality/value This paper is intended to be added to the family of green inhibitors which are highly efficient inhibitors and can be used in the area of corrosion prevention and control.


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25314-25333
Author(s):  
Mai A. Khaled ◽  
Mohamed A. Ismail ◽  
Ahmed. A. El-Hossiany ◽  
Abd El-Aziz S. Fouda

This study targets the investigation of three pyrimidine derivatives (MA-1230, MA-1231, MA-1232) for the prevention of corrosion on copper in 1 M HNO3via weight loss (WL), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) techniques.


Author(s):  
Sajjad Sadeghi ◽  
Hadi Ebrahimifar

Abstract The use of ceramic particles in the matrix of alloy coatings during the electroplating process has received considerable attention. These particles can create properties such as high corrosion resistance, insolubility, high-temperature stability, strong hardness, and self-lubrication capability. Herein, an Ni–P–W–TiO2 coating was deposited on an AISI 304L steel substrate using the electroplating method. Electroplating was performed at current densities of 10, 15, 20, and 25 mA · cm–2, and the effect of current density on microstructure, corrosion behavior, and wear behavior was investigated. The coatings were characterized by means of scanning electron microscopy. To investigate corrosion resistance, potentiodynamic polarization and electrochemical impedance spectroscopy tests were performed in a 3.5% NaCl aqueous solution. A pin-on-disk test was conducted to test the wear resistance of uncoated and coated samples. Sample micro-hardness was also measured by Vickers hardness testing. Examination of the microstructure revealed that the best coating was produced at a current density of 20 mA · cm–2. The results of potentiodynamic polarization and electrochemical impedance spectroscopy tests were consistent with microscopic images. The coating created at the current density of 20 mA · cm–2 had the highest corrosion resistance compared to other coated and non-coated samples. Furthermore, the results of the wear test showed that increasing the current density of the electroplating path up to 20 mA · cm–2 enhances micro-hardness and wear resistance.


2019 ◽  
Vol 43 (16) ◽  
pp. 6303-6313 ◽  
Author(s):  
Ambrish Singh ◽  
K. R. Ansari ◽  
M. A. Quraishi ◽  
Savas Kaya ◽  
Priyabrata Banerjee

The corrosion inhibition behavior of a naphthoxazinone derivative 1-phenyl-1,2-dihydronaphtho[1,2-e][1,3]oxazin-3-one (PNO) on J55 steel in 3.5 wt% NaCl solution saturated with carbon dioxide was evaluated using weight loss, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization.


2013 ◽  
Vol 756-759 ◽  
pp. 85-88
Author(s):  
Xiao Ming Wang ◽  
Sheng Zhu ◽  
Qing Chang ◽  
Guo Feng Han

Al-based coating on ZM5 magnesium alloy was prepared by Supersonic Particles Deposition (SPD). Electrochemical working station was utilized to test polarization curve, corrosion potential and electrochemical impedance spectroscopy etc. The results indicted that corrosion potential of Al-Si coating was about-767.6mV, much higher than that of ZM5 Mg-substrate; And corrosion current density of the coating sample decreased three order of magnitude than that of the uncoated. Compared to Mg-substrate, the radius of capacitive impedance arc of the coating enlarged and impedance modulus improved two order of magnitude.


2009 ◽  
Vol 6 (s1) ◽  
pp. S189-S194 ◽  
Author(s):  
N. S. Patel ◽  
S. Jauhari ◽  
G. N. Mehta

Extract ofFicus exasperataleaves was investigated as corrosion inhibitor of mild steel in 1 N H2SO4using conventional weight loss, electrochemical polarizations, electrochemical impedance spectroscopy and scanning electron microscopic studies. The weight loss results showed that the extract ofFicus exasperatais excellent corrosion inhibitor. Electrochemical polarizations data revealed the mixed mode of inhibition. The results of electrochemical impedance spectroscopy shows that the change in the impedance parameters, charge transfer resistance and double layer capacitance, with the change in concentration of the extract is due to the adsorption of active molecules leading to the formation of a protective layer on the surface of mild steel. Scanning electron microscopic studies provided the confirmatory evidence of improved surface condition, due to the adsorption, for the corrosion protection.


2013 ◽  
Vol 750-752 ◽  
pp. 2258-2262 ◽  
Author(s):  
Wei Ming Wu ◽  
Ding Li ◽  
Hai Yan Du

The experiments were done to find some good corrosion inhibitors for mild steel in 5% HF solution by the method of weight loss and electrochemistry including polarization curves and electrochemical impedance spectroscopy (EIS). Results show that the thiourea, potassium thiocyanate, and hexamethylenetetramine have good inhibition effect for mild steel in 5% HF solution, especially potassium thiocyanate and thiourea. Their corrosion resistance was greatly enhanced in the presence of tested inhibitor. Thiourea is an anodic type inhibitor and its inhibition efficiencies up to 99.88% can be obtained. Equivalent circuit of the investigated system was suggested.


Sign in / Sign up

Export Citation Format

Share Document