Performance improvement of helicopter rotors through blade redesigning

2019 ◽  
Vol 91 (5) ◽  
pp. 747-755
Author(s):  
Wienczyslaw Stalewski ◽  
Wieslaw Zalewski

Purpose The purpose of this paper is to determine dependencies between a rotor-blade shape and a rotor performance as well as to search for optimal shapes of blades dedicated for helicopter main and tail rotors. Design/methodology/approach The research is conducted based on computational methodology, using the parametric-design approach. The developed parametric model takes into account several typical blade-shape parameters. The rotor aerodynamic characteristics are evaluated using the unsteady Reynolds-averaged Navier–Stokes solver. Flow effects caused by rotating blades are modelled based on both simplified approach and truly 3D simulations. Findings The computational studies have shown that the helicopter-rotor performance may be significantly improved even through relatively simple aerodynamic redesigning of its blades. The research results confirm high potential of the developed methodology of rotor-blade optimisation. Developed families of helicopter-rotor-blade airfoils are competitive compared to the best airfoils cited in literature. The finally designed rotors, compared to the baselines, for the same driving power, are characterised by 5 and 32% higher thrust, in case of main and tail rotor, respectively. Practical implications The developed and implemented methodology of parametric design and optimisation of helicopter-rotor blades may be used in future studies on performance improvement of rotorcraft rotors. Some of presented results concern the redesigning of main and tail rotors of existing helicopters. These results may be used directly in modernisation processes of these helicopters. Originality/value The presented study is original in relation to the developed methodology of optimisation of helicopter-rotor blades, families of modern helicopter airfoils and innovative solutions in rotor-blade-design area.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Constantin Rotaru

Some results are presented about the study of airloads of the helicopter rotor blades, the aerodynamic characteristics of airfoil sections, the physical features, and the techniques for modeling the unsteady effects found on airfoil operating under nominally attached flow conditions away from stall. The unsteady problem was approached on the basis of Theodorsen's theory, where the aerodynamic response (lift and pitching moment) is considered as a sum of noncirculatory and circulatory parts. The noncirculatory or apparent mass accounts for the pressure forces required to accelerate the fluid in the vicinity of the airfoil. The apparent mass contributions to the forces and pitching moments, which are proportional to the instantaneous motion, are included as part of the quasi-steady result.


2018 ◽  
Vol 28 (5) ◽  
pp. 1080-1095 ◽  
Author(s):  
Fernando Tejero Embuena ◽  
Piotr Doerffer ◽  
Pawel Flaszynski ◽  
Oskar Szulc

Purpose Helicopter rotor blades are usually aerodynamically limited by the severe conditions present in every revolution: strong shock wave boundary layer interaction on the advancing side and dynamic stall on the retreating side. Therefore, different flow control strategies might be applied to improve the aerodynamic performance. Design/methodology/approach The present research is focussed on the application of passive rod vortex generators (RVGs) to control the flow separation induced by strong shock waves on helicopter rotor blades. The formation and development in time of the streamwise vortices are also investigated for a channel flow. Findings The proposed RVGs are able to generate streamwise vortices as strong as the well-known air-jet vortex generators. It has been demonstrated a faster vortex formation for the rod type. Therefore, this flow control device is preferred for applications in which a quick vortex formation is required. Besides, RVGs were implemented on helicopters rotor blades improving their aerodynamic performance (ratio thrust/power consumption). Originality/value A new type of vortex generator (rod) has been investigated in several configurations (channel flow and rotor blades).


Author(s):  
Alan M. Didion ◽  
Jonathan Kweder ◽  
Mary Ann Clarke ◽  
James E. Smith

Circulation control technology has proven itself useful in the area of short take-off and landing (STOL) fixed wing aircraft by decreasing landing and takeoff distances, increasing maneuverability and lift at lower speeds. The application of circulation control technology to vertical take-off and landing (VTOL) rotorcraft could also prove quite beneficial. Successful adaptation to helicopter rotor blades is currently believed to yield benefits such as increased lift, increased payload capacity, increased maneuverability, reduction in rotor diameter and a reduction in noise. Above all, the addition of circulation control to rotorcraft as controlled by an on-board computer could provide the helicopter with pitch control as well as compensate for asymmetrical lift profiles from forward flight without need for a swashplate. There are an infinite number of blowing slot configurations, each with separate benefits and drawbacks. This study has identified three specific types of these configurations. The high lift configuration would be beneficial in instances where such power is needed for crew and cargo, little stress reduction is offered over the base line configuration. The stress reduction configuration on the other hand, however, offers little extra lift but much in the way of increased rotor lifespan and shorter rotor length. Finally, the middle balanced configuration offers a middle ground between the two extremes. With this configuration, the helicopter benefits in all categories of lift, stress reduction and blade length reduction.


2018 ◽  
Vol 90 (6) ◽  
pp. 937-945 ◽  
Author(s):  
Saijal Kizhakke Kodakkattu ◽  
Prabhakaran Nair ◽  
Joy M.L.

Purpose The purpose of this study is to obtain optimum locations, peak deflection and chord of the twin trailing-edge flaps and optimum torsional stiffness of the helicopter rotor blade to minimize the vibration in the rotor hub with minimum requirement of flap control power. Design/methodology/approach Kriging metamodel with three-level five variable orthogonal array-based data points is used to decouple the optimization problem and actual aeroelastic analysis. Findings Some very good design solutions are obtained using this model. The best design point in minimizing vibration gives about 81 per cent reduction in the hub vibration with a penalization of increased flap power requirement, at normal cruise speed of rotor-craft flight. Practical implications One of the major challenges in the helicopters is the high vibration level in comparison with fixed wing aircraft. The reduction in vibration level in the helicopter improves passenger and crew comfort and reduces maintenance cost. Originality/value This paper presents design optimization of the helicopter rotor blade combining five design variables, such as the locations of twin trailing-edge flaps, peak deflection and flap chord and torsional stiffness of the rotor. Also, this study uses kriging metamodel to decouple the complex aeroelastic analysis and optimization problem.


2015 ◽  
Vol 119 (1222) ◽  
pp. 1513-1539 ◽  
Author(s):  
J. W. Lim

AbstractThis design study applied parameterisation to rotor blade for improved performance. In the design, parametric equations were used to represent blade planform changes over the existing rotor blade model. Design variables included blade twist, sweep, dihedral, and radial control point. Updates to the blade structural properties with changes in the design variables allowed accurate evaluation of performance objectives and realistic structural constraints – blade stability, steady moments (flap bending, chord bending, and torsion), and the high g manoeuvring pitch link loads. Performance improvement was demonstrated with multiple parametric designs. Using a parametric design with advanced aerofoils, the predicted power reduction was 1·0% in hover, 10·0% at μ = 0·30, and 17·0% at μ = 0·40 relative to the baseline UH-60A rotor, but these were obtained with a 35% increase in the steady chord bending moment at μ = 0·30 and a 20% increase in the half peak-to-peak pitch link load during the UH-60A UTTAS manoeuvre Low vibration was maintained for this design. More rigorous design efforts, such as chord tapering and/or structural redesign of the blade cross section, would enlarge the feasible design space and likely provide significant performance improvement.


Transport ◽  
2007 ◽  
Vol 22 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Andrejs Kovalovs ◽  
Evgeny Barkanov ◽  
Sergejs Gluhihs

The design methodology based on the planning of experiments and response surface technique has been developed for an optimum placement of Macro Fiber Composite (MFC) actuators in the helicopter rotor blades. The baseline helicopter rotor blade consists of D‐spar made of UD GFRP, skin made of +450/‐450 GFRP, foam core, MFC actuators placement on the skin and balance weight. 3D finite element model of the rotor blade has been built by ANSYS, where the rotor blade skin and spar “moustaches” are modeled by the linear layered structural shell elements SHELL99, and the spar and foam ‐ by 3D 20‐node structural solid elements SOLID 186. The thermal analyses of 3D finite element model have been developed to investigate an active twist of the helicopter rotor blade. Strain analogy between piezoelectric strains and thermally induced strains is used to model piezoelectric effects. The optimisation results have been obtained for design solutions, connected with the application of active materials, and checked by the finite element calculations.


Sign in / Sign up

Export Citation Format

Share Document