A warranty based bilateral multi-issue negotiation approach

2015 ◽  
Vol 22 (7) ◽  
pp. 1247-1280 ◽  
Author(s):  
Prashant M. Ambad ◽  
Makarand S. Kulkarni

Purpose – The purpose of this paper is to propose a warranty-based bilateral automated multi-issue negotiation approach. Design/methodology/approach – A methodology for bilateral automated negotiation process is developed considering the targets such as warranty attractiveness, warranty cost, mean time between failures, spare parts cost to the end user over the useful life of the life. The negotiation methodology is explained using different cases of negotiation. The optimization for each negotiation step is carried out using genetic algorithm with elitism strategy. Findings – The result after optimization indicates that the desired target values are achieved and manufacturer obtained desired profit margin. Practical implications – Application of automated negotiation model is illustrated using a real life case of an automobile engine manufacturer. The proposed approach helps the manufacturer of any product to develop a methodology for carrying out the negotiation process. The approach also results into taking warranty-related decisions at the design stage. Originality/value – This paper contributes in proposing a generalized methodology for warranty-based negotiation in which the negotiation is carried out between the manufacturer and the customer.

2018 ◽  
Vol 29 (8) ◽  
pp. 1296-1315 ◽  
Author(s):  
Arash Shahin ◽  
Nahid Aminsabouri ◽  
Kamran Kianfar

Purpose The purpose of this paper is to further develop the Decision Making Grid (DMG) proposed by Ashraf Labib (e.g. Labib, 1998, 2004; Fernandez et al., 2003; Aslam-Zainudeen and Labib, 2011; Stephen and Labib, 2018; Seecharan et al., 2018) by proposing an innovative solution for determining proactive maintenance tactics based on mean time between failures (MTBF) and mean time to repair (MTTR) indicators. Design/methodology/approach First, the influence of MTTR and MTBF indicators on proactive maintenance tactics was computed. The tactics included risk-based maintenance (RBM), reliability-centered maintenance (RCM), total productive maintenance (TPM), design out maintenance (DOM), accessibility-centered maintenance (ACM) and business-centered maintenance (BCM). Then, the tactics were allocated to the cells of a DMG with MTTR and MTBF axes. The proposed approach was examined on 32 pieces of equipment of the Esfahan Steel Company and appropriate maintenance tactics were consequently determined. Findings The findings indicate that the DOM, BCM, RBM and ACM tactics with weights of 0.86, 0.94, 0.68 and 1.00 are located at the corners of the DMG, respectively. The two remaining tactics of TPM and RCM are located at the middle corners. Also, the results indicate that the share of tactics per spotted equipment in the grid as 62, 22 and 16 percent for RCM, DOM and BCM, respectively. Research limitations/implications While reactive and preventive maintenance strategies include corrective, prospective, predetermined, proactive and predictive policies, the focus of this study was merely on the tactics of proactive maintenance policy. The advantage of the developed DMG over Labib’s DMG lies in its application for equipment with the unique condition of the bathtub curve. Originality/value While the basic DMG has been mostly used regardless of the type of maintenance policies, this study provides a DMG for a specific application regarding the proactive policy. In addition, the heuristic approach proposed for the development of DMG distinguishes this study from other studies.


2015 ◽  
Vol 32 (4) ◽  
pp. 415-431 ◽  
Author(s):  
Prashant M. Ambad ◽  
Makarand S. Kulkarni

Purpose – The purpose of this paper is to develop an attractiveness index-based warranty cost model considering decision variables as design alternatives, warranty duration and support level. Design/methodology/approach – A warranty optimization approach is illustrated using a real life example of an automobile engine with Mean Time Between Failures and Warranty Attractiveness Index as constraints. Findings – It will help to improve the customer satisfaction by giving a more attractive warranty compared to that being offered by the competitors. Practical implications – Approaches that consider the effect of decision variables on attractiveness of a warranty policy in a quantitative manner have received relatively less attention. The paper attempts to capture the attractiveness of warranty from the manufacturer as well as customer point of view. Originality/value – The proposed approach will help manufacturers to take appropriate decisions related to warranty parameters and component selection at the design stage.


2014 ◽  
Vol 48 (3) ◽  
pp. 25-42 ◽  
Author(s):  
Narayanaswamy Vedachalam ◽  
Gidugu Ananada Ramadass ◽  
Malayath Aravindakshan Atmanand

AbstractThis paper reviews the latest advancements in subsea technologies associated with the safety of deep-water human occupied vehicles. Human occupied submersible operations are required for deep-water activities, such as high-resolution bathymetry, biological and geological surveys, search activities, salvage operations, and engineering support for underwater operations. As this involves direct human presence, the system has to be extremely safe and reliable. Based on applicable IEC 61508 Standards for health, safety, and environment (HSE), the safety integrity level requirements for the submersible safety systems are estimated. Safety analyses are done on 10 critical submersible safety systems with the assumption that the submersible is utilized for 10 deep-water missions per year. The results of the analyses are compared with the estimated target HSE requirements, and it is found that, with the present technological maturity and safety-centered design, it is possible to meet the required safety integrity levels. By proper maintenance, it is possible to keep the mean time between failures to more than 9 years. The results presented shall serve as a model for designers to arrive at the required trade-off between the capital expenditure, operating expenditure, and required safety levels.


Actuators ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 54 ◽  
Author(s):  
Suzana Lampreia ◽  
Valter Vairinhos ◽  
Victor Lobo ◽  
José Requeijo

This paper describes the analysis, from a statistical point of view, of a maritime gas turbine, under various operating conditions, so as to determine its state. The data used concerns several functioning parameters of the turbines, such as temperatures and vibrations, environmental data, such as surrounding temperature, and past failures or quasi-failures of the equipment. The determination of the Mean Time Between Failures (MTBF) gives a rough estimate of the state of the turbine, but in this paper we show that it can be greatly improved with graphical and statistical analysis of data measured during operation. We apply the Laplace Test and calculate the gas turbine reliability using that data, to define the gas turbine failure tendency. Using these techniques, we can have a better estimate of the turbine’s state, and design a preventive observation, inspection and intervention plan.


2009 ◽  
Vol 58 (4) ◽  
pp. 589-596 ◽  
Author(s):  
Y.H. Michlin ◽  
G.Y. Grabarnik ◽  
E. Leshchenko

2019 ◽  
Vol 25 (2) ◽  
pp. 199-212
Author(s):  
Chibundo Princewill Nwadinobi ◽  
Bethrand Nduka Nwankwojike ◽  
Fidelis Ibiang Abam

Purpose The purpose of this paper is to propose a software (Equipment State Simulator) used for predicting equipment performance parameters required for maintenance planning. Design/methodology/approach This maintenance software was developed from the derived stable state probability models using algebraic substitution and computation of total operational period, number of breakdowns, total downtime, mean time between failures and mean time to repair of equipment/component(s) at preventive maintenance and corrective maintenance states. The models were derived using mechanistic modeling technique such that all the relevant variables were accounted for. Findings Analysis of this software revealed that its predictions reckon with the actual performance of the test specimens by about 99 percent. Originality/value The research proposes a maintenance model and software for predicting state probabilities of manufacturing systems degradation. This program also predicts maintenance action(s) required by the equipment based on the predetermined alert levels.


Author(s):  
AVINASH SAXENA ◽  
SHRISHA RAO

Degradation analysis is used to analyze the useful lifetimes of systems, their failure rates, and various other system parameters like mean time to failure (MTTF), mean time between failures (MTBF), and the system failure rate (SFR). In many systems, certain possible parallel paths of execution that have greater chances of success are preferred over others. Thus we introduce here the concept of probabilistic parallel choice. We use binary and n-ary probabilistic choice operators in describing the selections of parallel paths. These binary and n-ary probabilistic choice operators are considered so as to represent the complete system (described as a series-parallel system) in terms of the probabilities of selection of parallel paths and their relevant parameters. Our approach allows us to derive new and generalized formulae for system parameters like MTTF, MTBF, and SFR. We use a generalized exponential distribution, allowing distinct installation times for individual components, and use this model to derive expressions for such system parameters.


Sign in / Sign up

Export Citation Format

Share Document