Balancing of life cycle carbon and cost appraisal on alternative wall and roof design verification for residential building

2018 ◽  
Vol 18 (3) ◽  
pp. 274-300 ◽  
Author(s):  
Ali Tighnavard Balasbaneh ◽  
Abdul Kadir Bin Marsono ◽  
Emad Kasra Kermanshahi

Purpose The purpose of this study is to describe life cycle cost (LCC) and life cycle assessment (LCA) evaluation for single story building house in Malaysia. Two objective functions, namely, LCA and LCC, were evaluated for each design and a total of 20 alternatives were analyzed. Two wall schemes that have been adopted from two different recent studies toward mitigation of climate change require clarification in both life cycle objectives. Design/methodology/approach For this strategic life cycle assessment, Simapro 8.3 tool has been chosen over a 50-year life span. LCC analysis was also used to determine not only the most energy-efficient strategy, but also the most economically feasible one. A present value (PV)-based economic analysis takes LCC into account. Findings The results will appear in present value and LC carbon footprint saving, both individually and in combination with each other. Result of life cycle management shows that timber wall−wooden post and beam covered by steel stud (W5) and wood truss with concrete roof tiles (R1) released less carbon emission to atmosphere and have lower life cycle cost over their life span. W5R1 releases 35 per cent less CO2 emission than the second best choice and costs 25 per cent less. Originality/value The indicator assessed was global warming, and as the focus was on GHG emissions, the focus of this study was mainly in the context of Malaysian construction, although the principles apply universally. The result would support the adoption of sustainable building for building sector.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Titus Ebenezer Kwofie ◽  
Clinton Ohis Aigbavboa ◽  
Wellington Didibhuku Thwala

Purpose The South African Construction Industry (SACI) in recent times has been characterized by a strong emphasis towards achieving sustainable building practices in infrastructural delivery. However, the lack of progress encountered in making gains in achieving sustainable practices has raised concerns over the effectiveness and understanding of the extent to which life cycle assessment (LCA) techniques may aid in meeting requirements of sustainable construction. Most efforts at LCA have been blighted with numerous barriers that have not been rigorously pursued and aggregated. Ironically, there is a lack of knowledge and understanding of the limitations and barriers to these methodologies, especially in the South African context. The purpose of this study is to delineate the cluster of barriers to the adoption of LCA methodologies in the SACI. Design/methodology/approach A questionnaire survey was carried out from a deductive research design elicit primary data based on the experience of purposively sampled stakeholders in LCA in the SACI on the extent they perceived the presence of well-established barriers in LCA adoption culled from the extensive literature review. Findings Through the use of factor analysis, three aggregated clusters of key barriers to LCA adoption in the SACI were identified, which were knowledge and enabling conditions constraints, cost and time constraints and technical constraints. The results confirm that indeed human and technical barriers have been notable in limiting gains in LCA adoption and achieving sustainable practices. Originality/value These findings are, thus, useful in overcoming challenges to LCA methodologies in achieving sustainable building practices in building and infrastructural delivery in SACI.


2019 ◽  
Vol 18 (2) ◽  
pp. 480-494
Author(s):  
Titus Ebenezer Kwofie ◽  
Clinton Ohis Aigbavboa ◽  
Wellington Didibhuku Thwala

Purpose In spite of the urge among stakeholders to increase sustainability in the built environment, the South African Construction Industry (SACI) continues to suffer from low level of adoption of strategies such as life cycle assessment (LCA) to increase sustainable building practices in building and infrastructure delivery, hence the need to increase the adoption of sustainable concepts and sustainability practices is an emergent necessity. This study aims to identify the measures that can increase the adoption of LCA toward overcoming the practical difficulties, theoretical concerns and structural differences encountered in making gains in achieving sustainable practices in the SA construction industry. Design/methodology/approach The study adopted a deductive research design using a questionnaire survey with mean scores, Kruskal–Wallis and least square regression analysis done. Findings The study determined ten measures that can significantly influence about 88 per cent improvement in the success of LCA adopting in the SA industry. Also, there was a higher level of consensus in the findings which offers credence and good representation of the practical reality in the LCA adoption in South Africa. Originality/value These measures could be seen to embrace behavioural, social, technical and policy dimensions of LCA adoption. The findings are thus crucial in overcoming challenges to LCA methodologies in achieving sustainable building practices in the construction process in building and infrastructural delivery in SACI.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7515
Author(s):  
Bertrand Teodosio ◽  
Francesco Bonacci ◽  
Seongwon Seo ◽  
Kasun Shanaka Kristombu Baduge ◽  
Priyan Mendis

The need for advancements in residential construction and the hazard induced by the shrink–swell reactive soil movement prompted the development of the prefabricated footing system of this study, which was assessed and compared to a conventional waffle raft using a multi-criteria analysis. The assessment evaluates the structural performance, cost efficiency, and sustainability using finite element modelling, life cycle cost analysis, and life cycle assessment, respectively. The structural performance of the developed prefabricated system was found to have reduced the deformation and cracking by approximately 40%. However, the cost, GHG emission, and embodied energy were higher in the prefabricated footing system due to the greater required amount of concrete and steel than that of the waffle raft. The cost difference between the two systems can be reduced to as low as 6% when prefabricated systems were installed in a highly reactive sites with large floor areas. The life cycle assessment further observed that the prefabricated footing systems consume up to 21% more energy and up to 18% more GHG emissions. These can significantly be compensated by reusing the developed prefabricated footing system, decreasing the GHG emission and energy consumption by 75–77% and 55–59% with respect to that of the waffle raft.


Facilities ◽  
2018 ◽  
Vol 36 (13/14) ◽  
pp. 657-675 ◽  
Author(s):  
Ki Pyung Kim ◽  
Kenneth Sungho Park

PurposeThe aim of this research is to examine if building information modelling (BIM) is feasible as an information management platform to determine a financially and environmentally affordable housing refurbishment solution based on the life cycle cost (LCC) and LCC calculation.Design/methodology/approachA case study in conjunction with BIM simulation approach using BIM tools (Autodesk Revit and IES VE/IMPACT) was adopted to identify the feasibility of BIM for the simultaneous formulation of LCC and life cycle assessment in housing refurbishment.FindingsThis research reveals that BIM is a suitable for the information management platform to enable construction professionals to consider trade-off relationship between LCC and life cycle assessment simultaneously, and determine the most financially and environmentally affordable refurbishment solution. The interoperability issues in data exchange among different BIM tools and unstandardized BIM object libraries with incomplete data sets of construction materials are recognised as the major shortcomings in a BIM system. Essential remedial actions to overcome the shortcomings in the current BIM tools are identified.Research limitations/implicationsActual housing information and various refurbishment materials for the BIM simulation are limited.Practical implicationsThis research contributes to supporting construction professionals to prepare practical BIM adoption for the integration of the LCC and life cycle assessment that can significantly improve early decision-makings on sustainable housing refurbishment.Originality/valueThis research will contribute to providing proper remedial actions to overcome the shortcomings in the current BIM tools, and insights for construction professionals to understand the implication of BIM-embedded housing refurbishment.


2015 ◽  
Vol 26 (3) ◽  
pp. 389-406 ◽  
Author(s):  
Maria Francesca Milazzo ◽  
Francesco Spina

Purpose – The purpose of this paper is to quantify the human health impacts of soy-biodiesel production with the aim to discuss about its environmental sustainability. Design/methodology/approach – The integrated use of two current approaches, risk assessment (RA) and life cycle assessment (LCA), has allowed improvement of the potentialities of both in obtaining a more complete analysis. The implementation of a life cycle indicator for the assessment of the impacts on the human health, integrating the features of both approaches, is the main focus of this paper. Findings – It has been found that, although the biodiesel is a green fuel, it has some criticalities in its life cycle, which cannot be disregarded. In fact, even if biodiesel is essentially a clean fuel there are some phases, prior to the industrial phase, that can cause negative effects on human health and ecosystems. Practical implications – Results suggest some measures which can be adopted to substantially reduce human health impacts. Further alternative could be analysed in future to gain more insight about the use of biodiesel fuels. Originality/value – The estimation of the impacts of a process producing biodiesel has been made by using a novel approach. The novelty is associated with the calculation of the impacts on human health by using the transfer factors applied in RA. The use of such factors, properly modified in order to estimate the impacts on a wider scale than a site-dimension, allows defining a holistic approach, as LCA and RA are used as complete units but at the same time can be related to each other.


Author(s):  
Soumith Kumar Oduru ◽  
Pasi Lautala

Transportation industry at large is a major consumer of fossil fuels and contributes heavily to the global greenhouse gas emissions. A significant portion of these emissions come from freight transportation and decisions on mode/route may affect the overall scale of emissions from a specific movement. It is common to consider several alternatives for a new freight activity and compare the alternatives from economic perspective. However, there is a growing emphasis for adding emissions to this evaluation process. One of the approaches to do this is through Life Cycle Assessment (LCA); a method for estimating the emissions, energy consumption and environmental impacts of the project throughout its life cycle. Since modal/route selections are often investigated early in the planning stage of the project, availability of data and resources for analysis may become a challenge for completing a detailed LCA on alternatives. This research builds on such detailed LCA comparison performed on a previous case study by Kalluri et al. (2016), but it also investigates whether a simplified LCA process that only includes emissions from operations phase could be used as a less resource intensive option for the analysis while still providing relevant outcomes. The detailed LCA is performed using SimaPro software and simplified LCA is performed using GREET 2016 model. The results are obtained in terms of Kg CO2 equivalents of GHG emissions. This paper introduces both detailed and simplified methodologies and applies them to a case study of a nickel and copper mine in the Upper Peninsula of Michigan. The analysis’ are done for three modal alternatives (two truck routes and one rail route) and for multiple mine lives.


Sign in / Sign up

Export Citation Format

Share Document