scholarly journals Delivering value for money with BIM-embedded housing refurbishment

Facilities ◽  
2018 ◽  
Vol 36 (13/14) ◽  
pp. 657-675 ◽  
Author(s):  
Ki Pyung Kim ◽  
Kenneth Sungho Park

PurposeThe aim of this research is to examine if building information modelling (BIM) is feasible as an information management platform to determine a financially and environmentally affordable housing refurbishment solution based on the life cycle cost (LCC) and LCC calculation.Design/methodology/approachA case study in conjunction with BIM simulation approach using BIM tools (Autodesk Revit and IES VE/IMPACT) was adopted to identify the feasibility of BIM for the simultaneous formulation of LCC and life cycle assessment in housing refurbishment.FindingsThis research reveals that BIM is a suitable for the information management platform to enable construction professionals to consider trade-off relationship between LCC and life cycle assessment simultaneously, and determine the most financially and environmentally affordable refurbishment solution. The interoperability issues in data exchange among different BIM tools and unstandardized BIM object libraries with incomplete data sets of construction materials are recognised as the major shortcomings in a BIM system. Essential remedial actions to overcome the shortcomings in the current BIM tools are identified.Research limitations/implicationsActual housing information and various refurbishment materials for the BIM simulation are limited.Practical implicationsThis research contributes to supporting construction professionals to prepare practical BIM adoption for the integration of the LCC and life cycle assessment that can significantly improve early decision-makings on sustainable housing refurbishment.Originality/valueThis research will contribute to providing proper remedial actions to overcome the shortcomings in the current BIM tools, and insights for construction professionals to understand the implication of BIM-embedded housing refurbishment.

2018 ◽  
Vol 18 (3) ◽  
pp. 274-300 ◽  
Author(s):  
Ali Tighnavard Balasbaneh ◽  
Abdul Kadir Bin Marsono ◽  
Emad Kasra Kermanshahi

Purpose The purpose of this study is to describe life cycle cost (LCC) and life cycle assessment (LCA) evaluation for single story building house in Malaysia. Two objective functions, namely, LCA and LCC, were evaluated for each design and a total of 20 alternatives were analyzed. Two wall schemes that have been adopted from two different recent studies toward mitigation of climate change require clarification in both life cycle objectives. Design/methodology/approach For this strategic life cycle assessment, Simapro 8.3 tool has been chosen over a 50-year life span. LCC analysis was also used to determine not only the most energy-efficient strategy, but also the most economically feasible one. A present value (PV)-based economic analysis takes LCC into account. Findings The results will appear in present value and LC carbon footprint saving, both individually and in combination with each other. Result of life cycle management shows that timber wall−wooden post and beam covered by steel stud (W5) and wood truss with concrete roof tiles (R1) released less carbon emission to atmosphere and have lower life cycle cost over their life span. W5R1 releases 35 per cent less CO2 emission than the second best choice and costs 25 per cent less. Originality/value The indicator assessed was global warming, and as the focus was on GHG emissions, the focus of this study was mainly in the context of Malaysian construction, although the principles apply universally. The result would support the adoption of sustainable building for building sector.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hamed Nouri ◽  
Majid Safehian ◽  
Seyed Majdeddin Mir Mohammad Hosseini

PurposeAlthough the use of diverse types of bricks as the primary construction materials has been considered for many years, vernacular earthen materials are also widely used for construction with low potential environmental impacts in developing countries. In this study, the life cycle of two types of building materials for wall building is investigated.Design/methodology/approachFor this purpose, life cycle carbon emissions (LCCO2) are compared and embodied energy calculation for rammed earth and fired clay bricks as two construction materials. The complete construction chain using rammed earth, as a modern norm, and fired clay bricks, as the most common construction materials in buildings, is investigated in this research.FindingsStudies on the constructions in Kashan city in the north of Isfahan province, Iran, as a case study, showed that replacing the fired bricks with rammed earth would reduce the CO2 emissions up to 1,245 kg/ton and 4,646 MJ/ton (i.e. more than 95%) of the embodied energy. It also shows that the choice of building materials should be important for building practitioners to consider the environmental impact.Originality/valueThis paper provide life cycle assessment of building materials. The findings of this study help builders and owner to choose sustainable building materials.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3549
Author(s):  
Tulane Rodrigues da Silva ◽  
Afonso Rangel Garcez de Azevedo ◽  
Daiane Cecchin ◽  
Markssuel Teixeira Marvila ◽  
Mugahed Amran ◽  
...  

The urbanization process contributes to the growth of solid waste generation and causes an increase in environmental impacts and failures in the management of solid waste. The number of dumps is a concern due to the limited implementation and safe disposal of this waste. The interest in sustainable techniques has been growing in relation to waste management, which is largely absorbed by the civil construction sector. This work aimed to review plastic waste, especially polyethylene terephthalate (PET), that can be incorporated with construction materials, such as concrete, mortars, asphalt mixtures, and paving. The use of life-cycle assessment (LCA) is related, as a tool that allows the sustainability of products and processes to be enhanced in the long term. After analyzing the recent literature, it was identified that studies related to plastic wastes in construction materials concentrate sustainability around the alternative destination of waste. Since the plastic waste from different production chains are obtained, it was possible to affirm the need for a broader assessment, such as the LCA, providing greater quantification of data making the alternative processes and products more sustainable. The study contributes to enhance sustainability in alternative building materials through LCA.


2015 ◽  
Vol 26 (3) ◽  
pp. 389-406 ◽  
Author(s):  
Maria Francesca Milazzo ◽  
Francesco Spina

Purpose – The purpose of this paper is to quantify the human health impacts of soy-biodiesel production with the aim to discuss about its environmental sustainability. Design/methodology/approach – The integrated use of two current approaches, risk assessment (RA) and life cycle assessment (LCA), has allowed improvement of the potentialities of both in obtaining a more complete analysis. The implementation of a life cycle indicator for the assessment of the impacts on the human health, integrating the features of both approaches, is the main focus of this paper. Findings – It has been found that, although the biodiesel is a green fuel, it has some criticalities in its life cycle, which cannot be disregarded. In fact, even if biodiesel is essentially a clean fuel there are some phases, prior to the industrial phase, that can cause negative effects on human health and ecosystems. Practical implications – Results suggest some measures which can be adopted to substantially reduce human health impacts. Further alternative could be analysed in future to gain more insight about the use of biodiesel fuels. Originality/value – The estimation of the impacts of a process producing biodiesel has been made by using a novel approach. The novelty is associated with the calculation of the impacts on human health by using the transfer factors applied in RA. The use of such factors, properly modified in order to estimate the impacts on a wider scale than a site-dimension, allows defining a holistic approach, as LCA and RA are used as complete units but at the same time can be related to each other.


2016 ◽  
Vol 8 (7) ◽  
pp. 662 ◽  
Author(s):  
Aysun Özkan ◽  
Zerrin Günkaya ◽  
Gülden Tok ◽  
Levent Karacasulu ◽  
Melike Metesoy ◽  
...  

Author(s):  
Tomasz Siwowski ◽  
Aleksander Kozlowski ◽  
Leonard Ziemiański ◽  
Mateusz Rajchel ◽  
Damian Kaleta

<p>Technology and materials can help cities get smarter and cope with rapid urbanisation. Life cycle assessment (LCA) is one of the approaches applied in evaluation of material sustainability. Many significant LCA comparisons of innovative and traditional construction materials indicate that fibre- reinforced polymer (FRP) composites compare very favourably with other materials studied. As a proposal for rapid urbanisation, the FRP all-composite road bridge was developed and demonstrated in Poland. The paper describes the bridge system itself and presents the results of research on its development. The output of the R&amp;D project gives a very promising future for the FRP composite bridge application in Poland, especially for cleaner, resilient and more environmentally efficient infrastructure of fast-growing cities.</p>


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
AbdulLateef Olanrewaju ◽  
Yien Yen Tan ◽  
See Ning Soh

PurposeThe successive Malaysian government aims to provide housing to households earning the median income and below. However, there has been continuous criticism and complaints from the media and literature on the magnitude of the defects in affordable housing. Therefore, this research has investigated the defects in affordable housing for the users’/occupants' perspectives.Design/methodology/approachWith a response rate of 69%, the research developed a questionnaire instrument that included twenty-one defects in buildings based on literature and observation. These were scored on a 5-point Likert scale ranging from very common to least common. Twelve causes of defects measured on a five-point scale were included in the survey. Thirteen additional items that had to do with remedial actions to reduce defects were included. These were scored on a 5-point Likert scale ranging from strongly agree to least agree. The survey forms were administered to all the 152 home occupants in a Program Perumahan Rakyat (PPR) housing estate through hand delivery in a northern state in Malaysia.FindingsThe data revealed that broken doors, damaged roofs, damp walls and broken tiles in rooms were the most common defects in the housing development. It was found that defects in the buildings were caused by poor workmanship, defective materials, poor designs and bad weather. Additionally, to rectify the defects, adequate supervision is required during maintenance, the repairs must be conducted on time and there is a need to have competent maintenance organisations. Through factor analysis, the 21 defects were structured into six factors, the 12 causes were grouped into 5 factors and the 13 remedial actions were grouped into 6 factors.Practical implicationsThe information on the nature, degree and kinds of defects from the users' perspectives will dictate when repair work is to be undertaken and allow future work to be programmed and financed as part of a maintenance rolling programme.Originality/valueThis research focused specifically on “Program Perumahan Rakyat” housing development. Furthermore, none of the previous research on defects conducted attempted to categorise the defects in the buildings. The categorisation is very important for systemic decision-making because there are continuous interactions amongst the defects, causes and remedial actions.


2021 ◽  
Vol 13 (14) ◽  
pp. 7831
Author(s):  
Shaobo Liang ◽  
Hongmei Gu ◽  
Richard Bergman

Global construction industry has a huge influence on world primary energy consumption, spending, and greenhouse gas (GHGs) emissions. To better understand these factors for mass timber construction, this work quantified the life cycle environmental and economic performances of a high-rise mass timber building in U.S. Pacific Northwest region through the use of life-cycle assessment (LCA) and life-cycle cost analysis (LCCA). Using the TRACI impact category method, the cradle-to-grave LCA results showed better environmental performances for the mass timber building relative to conventional concrete building, with 3153 kg CO2-eq per m2 floor area compared to 3203 CO2-eq per m2 floor area, respectively. Over 90% of GHGs emissions occur at the operational stage with a 60-year study period. The end-of-life recycling of mass timber could provide carbon offset of 364 kg CO2-eq per m2 floor that lowers the GHG emissions of the mass timber building to a total 12% lower GHGs emissions than concrete building. The LCCA results showed that mass timber building had total life cycle cost of $3976 per m2 floor area that was 9.6% higher than concrete building, driven mainly by upfront construction costs related to the mass timber material. Uncertainty analysis of mass timber product pricing provided a pathway for builders to make mass timber buildings cost competitive. The integration of LCA and LCCA on mass timber building study can contribute more information to the decision makers such as building developers and policymakers.


Sign in / Sign up

Export Citation Format

Share Document