Hierarchical paradigm for automated optimal design of dual-band wearable antenna with simplified human body models

Author(s):  
Lukasz Januszkiewicz ◽  
Paolo Di Barba ◽  
Slawomir Hausman

Purpose The purpose of this study is to develop a method to reduce the computation time necessary for the automated optimal design of dual-band wearable antennas. In particular, the authors investigated if this can be achieved by the use of a hierarchical optimization paradigm combined with a simplified human body model. The geometry of the antenna under consideration is described via eight geometrical parameters which are automatically adjusted with the use of an evolutionary algorithm to improve the impedance matching of an antenna located in the proximity of a human body. Specifically, the antennas were designed to operate in the ISM band which covers two frequency ranges: 2.4-2.5 GHz and 5.7-5.9 GHz. Design/methodology/approach During the studies on the automated design of wearable antennas using evolutionary computing, the authors observed that not all design parameters exhibit equal influence on the objective function. Therefore, it was hypothesized that to reduce the computation effort, the design parameters can be activated sequentially based on their influence. Accordingly, the authors’ computer code has been modified to include this feature. Findings The authors’ novel hierarchical multi-parameter optimization method was able to converge to a better solution within a shorter time compared to an equivalent method not exploiting automatic activation of an increasing number of design parameters. Considering a significant computational cost involved in the calculation of the objective function, this exhibits a convincing advantage of their hierarchical approach, at least for the considered class of antennas. Research limitations/implications The described method has been developed for the design of single- or dual-band wearable antennas. Its application to other classes of antennas and antenna environments may require some adjustments of the objective functions or parameter values of the evolutionary algorithm. It follows from the well-recognized fact that all optimization methods are to some extent application-specific. Practical implications Computation load involved in the automated design and optimization can be significantly reduced compared to the non-hierarchical approach with a heterogeneous human body model. Originality/value To the best of the authors’ knowledge, the described application of hierarchical paradigm to the optimization of wearable antennas is fully original, as well as is its combination with simplified body models.

2011 ◽  
Vol 215 ◽  
pp. 136-143 ◽  
Author(s):  
B. Jiang ◽  
Chun Fu Lu ◽  
Xiao Jian Liu

Considering the demands for product ergonomics design, the paper proposed a driven design method for product’s shape and structure design through the manipulation of human body models. Based on the anthropometry data, a parametric human body driving model system is established with three layers, which are structure model, dimension model and surface model. The driven design method of product ergonomics design is realized, in which human body data are directly mapped to product design parameters. The driven design method provides a rational way to utilize ergonomics design principles and guarantee higher efficiency and more reliability. The method is tested in seat design examples.


2017 ◽  
Vol 29 (5) ◽  
pp. 673-685 ◽  
Author(s):  
Kaixuan Liu ◽  
Jianping Wang ◽  
Chun Zhu ◽  
Edwin Kamalha ◽  
Yan Hong ◽  
...  

Purpose The purpose of this paper is to propose a relatively simple and rapid method to create a digital human model (DHM) to serve clothing industry. Design/methodology/approach Human body’s point cloud is divided into hands, foots, head and torso. Then forward modeling method is used to model hands and foots, photo modeling method is used to model head and reverse modeling method is used to model torso. After that, hands, foots, head and torso are integrated together to get a static avatar. Next, virtual skeleton is bound to the avatar. Finally, a lifelike digital human body model is created by the mixed modeling method (MMM). Findings In allusion to the defect of the three-dimension original data of human body, this paper presented an MMM, with which we can get a realistic digital human body model with accurate body dimensions. The DHM can well meet the needs of fashion industry. Practical implications The DHM, which is got by the MMM, can be well applied in the field of virtual try on, virtual fashion design, virtual fashion show and so on. Originality/value The originality of the paper lies in the integration of forward modeling, reverse modeling and photo modeling to present a novel method of human body modeling.


Author(s):  
Bu S. Park ◽  
Sunder S. Rajan ◽  
Leonardo M. Angelone

We present numerical simulation results showing that high dielectric materials (HDMs) when placed between the human body model and the body coil significantly alter the electromagnetic field inside the body. The numerical simulation results show that the electromagnetic field (E, B, and SAR) within a region of interest (ROI) is concentrated (increased). In addition, the average electromagnetic fields decreased significantly outside the region of interest. The calculation results using a human body model and HDM of Barium Strontium Titanate (BST) show that the mean local SAR was decreased by about 56% (i.e., 18.7 vs. 8.2 W/kg) within the body model.


2009 ◽  
Vol 23 (17) ◽  
pp. 3586-3590 ◽  
Author(s):  
NUTTACHAI JUTONG ◽  
APIRAT SIRITARATIWAT ◽  
DUANGPORN SOMPONGSE ◽  
PORNCHAI RAKPONGSIRI

Electrostatic discharge (ESD) effects on GMR recording heads have been reported as the major cause of head failure. Since the information density in hard-disk drives has dramatically increased, the GMR head will be no longer in use. The tunneling magnetoresistive (TMR) read heads are initially introduced for a 100 Gbit/in2 density or more. Though the failure mechanism of ESD in GMR recording heads has not been explicitly understood in detail, a study to protect from this effect has to be done. As the TMR head has been commercially started, the ESD effect must be considered. This is the first time that the TMR equivalent circuit has been reported in order to evaluate the ESD effect. A standard human body model (HBM) is discharged across R+ and R- where the capacitances of flex on suspension (FOS) are varied. It is intriguingly found that the electrical characteristics of the TMR head during the discharge period depend on the discharge position. This may be explained in terms of the asymmetry impedance of TMR by using adapted Thevenin's theory. The effect of FOS components on TMR recording heads is also discussed.


Sign in / Sign up

Export Citation Format

Share Document