Using scaled FE solutions for an efficient coupled electromagnetic–thermal induction machine model

Author(s):  
Martin Marco Nell ◽  
Benedikt Groschup ◽  
Kay Hameyer

Purpose This paper aims to use a scaling approach to scale the solutions of a beforehand-simulated finite element (FE) solution of an induction machine (IM). The scaling procedure is coupled to an analytic three-node-lumped parameter thermal network (LPTN) model enabling the possibility to adjust the machine losses in the simulation to the actual calculated temperature. Design/methodology/approach The proposed scaling procedure of IMs allows the possibility to scale the solutions, particularly the losses, of a beforehand-performed FE simulation owing to temperature changes and therefore enables the possibility of a very general multiphysics approach by coupling the FE simulation results of the IM to a thermal model in a very fast and efficient way. The thermal capacities and resistances of the three-node thermal network model are parameterized by analytical formulations and an optimization procedure. For the parameterization of the model, temperature measurements of the IM operated in the 30-min short-time mode are used. Findings This approach allows an efficient calculation of the machine temperature under consideration of temperature-dependent losses. Using the proposed scaling procedure, the time to simulate the thermal behavior of an IM in a continuous operation mode is less than 5 s. The scaling procedure of IMs enables a rapid calculation of the thermal behavior using FE simulation data. Originality/value The approach uses a scaling procedure for the FE solutions of IMs, which results in the possibility to weakly couple a finite element method model and a LPTN model in a very efficient way.

Author(s):  
Ayesha Sayed ◽  
Dionysios C Aliprantis ◽  
Hao Ge ◽  
Konstantinos Laskaris

2013 ◽  
Vol 756-759 ◽  
pp. 4591-4595
Author(s):  
Wen Yu Song

Three-dimensional finite element analysis of harmonic electromagnetic field in a large and complex structure 15-phase induction machine has been completed. Accurate 3D finite element machine model is established. The current density of stator and rotor and the entire vector flux density distribution are given, then been analyzed and explained. 3D air gap radial flux density is obtained and has been made harmonic analysis. We can get more accurate electromagnetic field distribution and performance parameters through 3D finite element calculation of electromagnetic field. This method can give theoretical basis for the multiphase machine development of new structure and can play reference in terms of structural optimization design.


Author(s):  
Martin Marco Nell ◽  
Benedikt Schauerte ◽  
Tim Brimmers ◽  
Kay Hameyer

Purpose Various iron loss models can be used for the simulation of electrical machines. In particular, the effect of rotating magnetic flux density at certain geometric locations in a machine is often neglected by conventional iron loss models. The purpose of this paper is to compare the adapted IEM loss model for rotational magnetization that is developed within the context of this work with other existing models in the framework of a finite element simulation of an exemplary induction machine. Design/methodology/approach In this paper, an adapted IEM loss model for rotational magnetization, developed within the context of the paper, is implemented in a finite element method simulation and used to calculate the iron losses of an exemplary induction machine. The resulting iron losses are compared with the iron losses simulated using three other already existing iron loss models that do not consider the effects of rotational flux densities. The used iron loss models are the modified Bertotti model, the IEM-5 parameter model and a dynamic core loss model. For the analysis, different operating points and different locations within the machine are examined, leading to the analysis of different shapes and amplitudes of the flux density curves. Findings The modified Bertotti model, the IEM-5 parameter model and the dynamic core loss model underestimate the hysteresis and excess losses in locations of rotational magnetizations and low-flux densities, while they overestimate the losses for rotational magnetization and high-flux densities. The error is reduced by the adapted IEM loss model for rotational magnetization. Furthermore, it is shown that the dynamic core loss model results in significant higher hysteresis losses for magnetizations with a high amount of harmonics. Originality/value The simulation results show that the adapted IEM loss model for rotational magnetization provides very similar results to existing iron loss models in the case of unidirectional magnetization. Furthermore, it is able to reproduce the effects of rotational flux densities on iron losses within a machine simulation.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chitralekha Nahar ◽  
Pavan Kumar Gurrala

Purpose The thermal behavior at the interfaces (of the deposited strands) during fused filament fabrication (FFF) technique strongly influences bond formation and it is a time- and temperature-dependent process. The processing parameters affect the thermal behavior at the interfaces and the purpose of the paper is to simulate using temperature-dependent (nonlinear) thermal properties rather than constant properties. Design/methodology/approach Nonlinear temperature-dependent thermal properties are used to simulate the FFF process in a simulation software. The finite-element model is first established by comparing the simulation results with that of analytical and experimental results of acrylonitrile butadiene styrene and polylactic acid. Strand temperature and time duration to reach critical sintering temperature for the bond formation are estimated for one of the deposition sequences. Findings Temperatures are estimated at an interface and are then compared with the experimental results, which shows a close match. The results of the average time duration (time to reach the critical sintering temperature) of strands with the defined deposition sequences show that the first interface has the highest average time duration. Varying processing parameters show that higher temperatures of the extruder and envelope along with higher extruder diameter and lower convective heat transfer coefficient will have more time available for bonding between the strands. Originality/value A novel numerical model is developed using temperature-dependent (nonlinear) thermal properties to simulate FFF processes. The model estimates the temperature evolution at the strand interfaces. It helps to evaluate the time duration to reach critical sintering temperature (temperature above which the bond formation occurs) as it cools from extrusion temperature.


Author(s):  
Ayesha Sayed ◽  
Dionysios C Aliprantis ◽  
Hao Ge ◽  
Konstantinos Laskaris

2020 ◽  
Vol 10 (9) ◽  
pp. 3222
Author(s):  
Tin Benšić ◽  
Toni Varga ◽  
Marinko Barukčić ◽  
Vedrana Jerković Štil

This paper presents a method for selecting the sampling time for induction machine parameter estimation from the machine line start measurements. the metaheuristic optimization method is used to find the optimal Prony exponential series approxiamtion of the line start transient current. From the optimal approximation, poles of the linearized induction machine model are computed and used to determine the optimal sampling time. the results show that sampling frequencies needed for parameter estimation are much lower than 1–15 kHz commonly used today. This reduces the necessary amount of collected data and the computing power needed for the estimation. the optimal sampling time is computed for the simulated and for the measured data. Referenced parameter estimation technique is tested for the measured transient showing benefits of using the optimal sampling time.


2014 ◽  
Vol 31 (3) ◽  
pp. 467-489 ◽  
Author(s):  
Jonas Johansson ◽  
Ilja Belov ◽  
Erland Johnson ◽  
Peter Leisner

Purpose – The purpose of this paper is to introduce a novel computational method to evaluate damage accumulation in a solder joint of an electronic package, when exposed to operating temperature environment. A procedure to implement the method is suggested, and a discussion of the method and its possible applications is provided in the paper. Design/methodology/approach – Methodologically, interpolated response surfaces based on specially designed finite element (FE) simulation runs, are employed to compute a damage metric at regular time intervals of an operating temperature profile. The developed method has been evaluated on a finite-element model of a lead-free PBGA256 package, and accumulated creep strain energy density has been chosen as damage metric. Findings – The method has proven to be two orders of magnitude more computationally efficient compared to FE simulation. A general agreement within 3 percent has been found between the results predicted with the new method, and FE simulations when tested on a number of temperature profiles from an avionic application. The solder joint temperature ranges between +25 and +75°C. Practical implications – The method can be implemented as part of reliability assessment of electronic packages in the design phase. Originality/value – The method enables increased accuracy in thermal fatigue life prediction of solder joints. Combined with other failure mechanisms, it may contribute to the accuracy of reliability assessment of electronic packages.


Author(s):  
Fariz Aswan Ahmad Zakwan ◽  
◽  
Renga Rao Krishnamoorthy ◽  
Azmi Ibrahim ◽  
Ruqayyah Ismail ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document