Design and performance analysis of live model of Bessel beamformer for adaptive array system

Author(s):  
M. Yasin ◽  
Pervez Akhtar

Purpose – The purpose of this paper is to design and analyze the performance of live model of Bessel beamformer for thorough comprehension of beamforming in adaptive environment and compared with live model of least mean square (LMS) in terms of gain and mean square error (MSE). It presents the principal elements of communication system. The performance of designed live model is tested for its efficiency in terms of signal recovery, directive gain by minimizing MSE using the “wavrecord” function to bring live audio data in WAV format into the MATLAB workspace. These adaptive techniques are illustrated by appropriate examples. Design/methodology/approach – The proposed algorithm framework relies on MATLAB software with the goal to obtain high efficiency in terms of signal recovery, directive gain by minimizing MSE using the “wavrecord” function to bring live audio data in WAV format. It is assumed that this audio signal is only the message or the baseband signal received by the computer. Here the authors consider computer (laptop) as a base station containing adaptive signal processing algorithm and source (mobile phone) as a desired user, so the experiment setup is designed for uplink application (user to base station) to differentiate between desired signal, multipath and interfering signals as well as to calculate their directions of arrival. Findings – The presented adaptive live model is reliable, robust and lead to a substantial reduction of MSE, signal recovery in comparison with the LMS technique. The paper contains experimental data. Obtained results are presented clearly and the conclusion comes directly from the presented experimental data. The paper shows that the presented method leads to superior results in comparison with the popular LMS method and can be used as a better alternative in many practical applications. Research limitations/implications – The adaptive processes described in the paper are still limited to simulation. It is because of the non-availability of real system for testing, therefore chosen research approach that is platform of MATLAB is opted for simulation. Therefore, researchers are encouraged to test the proposed algorithms on real system if possible. Practical implications – The paper contains experimental data. The paper's impact on the society is acceptable. These implications are consistent with the findings and the conclusions of the paper. However, there is a need to extend this paper to a next level by implementing the proposed algorithms in the real time environment using FPGA technology. Social implications – This research will improve the signal quality of wireless cellular system by increasing capacity and will reduce the total cost of the system so that cost toward subscribers be decreased. Originality/value – The live model presented in this paper is shown to provide better results. It is the original work and can provide scientific contribution to signal processing community.

2021 ◽  
Vol 20 (2) ◽  
pp. 1-25
Author(s):  
Celia Dharmaraj ◽  
Vinita Vasudevan ◽  
Nitin Chandrachoodan

Approximate circuit design has gained significance in recent years targeting error-tolerant applications. In the literature, there have been several attempts at optimizing the number of approximate bits of each approximate adder in a system for a given accuracy constraint. For computational efficiency, the error models used in these routines are simple expressions obtained using regression or by assuming inputs or the error is uniformly distributed. In this article, we first demonstrate that for many approximate adders, these assumptions lead to an inaccurate prediction of error statistics for multi-level circuits. We show that mean error and mean square error can be computed accurately if static probabilities of adders at all stages are taken into account. Therefore, in a system with a certain type of approximate adder, any optimization framework needs to take into account not just the functionality of the adder but also its position in the circuit, functionality of its parents, and the number of approximate bits in the parent blocks. We propose a method to derive parameterized error models for various types of approximate adders. We incorporate these models within an optimization framework and demonstrate that the noise power is computed accurately.


2012 ◽  
Vol 152-154 ◽  
pp. 1313-1318
Author(s):  
Tao Lu ◽  
Su Mei Liu ◽  
Ping Wang ◽  
Wei Yyu Zhu

Velocity fluctuations in a mixing T-junction were simulated in FLUENT using large-eddy simulation (LES) turbulent flow model with sub-grid scale (SGS) Smagorinsky–Lilly (SL) model. The normalized mean and root mean square velocities are used to describe the time-averaged velocities and the velocities fluctuation intensities. Comparison of the numerical results with experimental data shows that the LES model is valid for predicting the flow of mixing in a T-junction junction. The numerical results reveal the velocity distributions and fluctuations are basically symmetrical and the fluctuation at the upstream of the downstream of the main duct is stronger than that at the downstream of the downstream of the main duct.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hani El Chaarani ◽  
Lukman Raimi

Purpose Social entrepreneurship is gradually becoming a potent driving force for economic and social development in developing countries as a result of governance deficits. The purpose of this study is to examine the determinant factors of successful social entrepreneurship in the emerging circular economy of Lebanon. The objective extends to exploring the mediating role of non-governmental organizations (NGOs) in the success of social entrepreneurship in Lebanon. Design/methodology/approach Using a cross-sectional survey design, the authors collected primary data from 389 social entrepreneurs through questionnaires in selected locations in Lebanon. The data collected were analyzed using descriptive and inferential statistics. The hypotheses were tested using linear regression and structural equation modeling (SEM) for predicting the impact of independent variable on the dependent variable. The validity, progressive and various models fits were tested using root mean square of approximation, root mean square of residuals, standard root mean square residuals, incremental fit index, fitness of the extracted and non-normal fit index. Findings The SEM estimations reveal that three main factors determine the success of social entrepreneurs in Lebanon, namely, environmental factors, psychological factors and prior experience. Moreover, the results reveal that support of NGOs positively moderates the relationships between the success of social entrepreneurship and two different variables (psychological factors and environmental factors), but failed to moderate the relationships between success of social entrepreneurship and four variables (experience, education, leadership and founding team composition). Originality/value The study contributes to the entrepreneurship and circular economy literature by explicating empirically the determinant factors of successful social entrepreneurship in Lebanon’s emerging circular economy. It also provides a fact-based social awareness on the role of local and international NGOs in supporting the social entrepreneurs in driving the idea of a circular economy. The study also validates multiple entrepreneurship theories.


2019 ◽  
Vol 15 (1) ◽  
pp. 258-264 ◽  
Author(s):  
Hamid Reza Ghaieni ◽  
Saeed Tavangar ◽  
Mohammad Moein Ebrahimzadeh Qhomi

Purpose The purpose of this paper is to present simple correlation for calculating nitrated hydroxyl-terminated polybutadiene (NHTPB) enthalpy of formation. Design/methodology/approach It uses multiple linear regression methods. Findings The proposed correlation has determination coefficient 0.96. The correlation has root mean square deviation and the average absolute deviations values 53.4 and 46.1 respectively. Originality/value The predictive power of correlation is checked by cross-validation method (R2=0.96, Q L O O 2 = 0.96 ).


2018 ◽  
Vol 90 (7) ◽  
pp. 1136-1144 ◽  
Author(s):  
Dimitris Gkiolas ◽  
Demetri Yiasemides ◽  
Demetri Mathioulakis

Purpose The complex flow behavior over an oscillating aerodynamic body, e.g. a helicopter rotor blade, a rotating wind turbine blade or the wing of a maneuvering airplane involves combinations of pitching and plunging motions. As the parameters of the problem (Re, St and phase difference between these two motions) vary, a quasi-steady analysis fails to provide realistic results for the aerodynamic response of the moving body, whereas this study aims to provide reliable experimental data. Design/methodology/approach In the present study, a pitching and plunging mechanism was designed and built in a subsonic closed-circuit wind tunnel as well as a rectangular aluminum wing of a 2:1 aspect-ratio with a NACA64-418 airfoil, used in wind turbine blades. To measure the pressure distribution along the wing chord, a number of fast responding transducers were embedded into the mid span wing surface. Simultaneous pressure measurements were conducted along the wing chord for the Reynolds number of 0.85 × 106 for both steady and unsteady cases (pitching and plunging). A flow visualization technique was used to detect the flow separation line under steady conditions. Findings Elevated pressure fluctuations coincide with the flow separation line having been detected through surface flow visualization and flattened pressure distributions appear downstream of the flow separation line. Closed hysteresis loops of the lift coefficient versus angle of attack were measured for combined pitching and plunging motions. Practical implications The experimental data can be used for improvement of unsteady fluid mechanics problem solvers. Originality/value In the present study, a new installation was built allowing the aerodynamic study of oscillating wings performing pitching and plunging motions with prescribed frequencies and phase lags between the two motions. The experimental data can be used for improvement of computational fluid dynamics codes in case that the examined aerodynamic body is oscillating.


2017 ◽  
Vol 8 (4) ◽  
pp. 433-440 ◽  
Author(s):  
Chathebert Mudhunguyo

Purpose The purpose of this paper is to evaluate accuracy of macro fiscal forecasts done by Government of Zimbabwe and the spillover effects of forecasting errors over the period 2010-2015. Design/methodology/approach In line with the study objectives, the study employed the root mean square error methodology to measure the accuracy of macro fiscal forecasts, borrowing from the work of Calitz et al. (2013). The spillover effects were assessed through running simple regression in Eviews programme. The data used in the analysis are based on annual national budget forecasts presented to the Parliament by the Minister of Finance. Actual data come from the Ministry of Finance budget outturns and Zimbabwe Statistical Agency published national accounts. Findings The results of the root mean square error revealed relatively high levels of macro-fiscal forecasting errors, with revenue recording the highest. The forecasting errors display a tendency of under predicting the strength of economic recovery during boom and over predicting its strength during periods of weakness. The study although found significant evidence of GDP forecasting errors translating into revenue forecasting inaccuracies, the GDP forecasting errors fail to fully account for the revenue errors. Revenue errors were, however, found to be positive and significant in explaining the budget balance errors. Originality/value In other jurisdictions, particularly developed countries, they undertake regular evaluation of their forecasts in order to improve their forecasting procedures, which translate into quality public service delivery. The situation is lagging in Zimbabwe. Given the poor performance in public service delivery in Zimbabwe, this study contributes in dissecting the sources of the challenge by providing a comprehensive review of macro fiscal forecasts.


2021 ◽  
Vol 9 (4) ◽  
pp. 110-126
Author(s):  
Wafa Benaatou ◽  
Adnane Latif ◽  
Vicent Pla

A heterogeneous wireless network needs to maintain seamless mobility and service continuity; for this reason, we have proposed an approach based on the combination of particle swarm optimization (PSO) and an adaptive neuro-fuzzy inference system (ANFIS) to forecast a handover during a movement of a mobile terminal from a serving base station to target base station. Additionally, the handover decision is made by considering several parameters, such as peak data rate, latency, packet loss, and power consumption, to select the best network for handover from an LTE to an LTE-A network. The performance efficiency of the new hybrid approach is determined by computing different statistical parameters, such as root mean square error (RMSE), coefficient of determination (R2), mean square error (MSE), and error standard deviation (StD). The execution of the proposed approach has been performed using MATLAB software. The simulation results show that the hybrid PSO-ANFIS model has better performance than other approaches in terms of prediction accuracy and reduction of handover latency and the power consumption in the network.  


2015 ◽  
Vol 81 (20) ◽  
pp. 7098-7105 ◽  
Author(s):  
Ivana Seccareccia ◽  
Christian Kost ◽  
Markus Nett

ABSTRACTBacteria of the genusLysobacterare considered to be facultative predators that use a feeding strategy similar to that of myxobacteria. Experimental data supporting this assumption, however, are scarce. Therefore, the predatory activities of threeLysobacterspecies were tested in the prey spot plate assay and in the lawn predation assay, which are commonly used to analyze myxobacterial predation. Surprisingly, only one of the testedLysobacterspecies showed predatory behavior in the two assays. This result suggested that not allLysobacterstrains are predatory or, alternatively, that the assays were not appropriate for determining the predatory potential of this bacterial group. To differentiate between the two scenarios, predation was tested in a CFU-based bioassay. For this purpose, defined numbers ofLysobactercells were mixed together with potential prey bacteria featuring phenotypic markers, such as distinctive pigmentation or antibiotic resistance. After 24 h, cocultivated cells were streaked out on agar plates and sizes of bacterial populations were individually determined by counting the respective colonies. Using the CFU-based predation assay, we observed thatLysobacterspp. strongly antagonized other bacteria under nutrient-deficient conditions. Simultaneously, theLysobacterpopulation was increasing, which together with the killing of the cocultured bacteria indicated predation. Variation of the predator/prey ratio revealed that all threeLysobacterspecies tested needed to outnumber their prey for efficient predation, suggesting that they exclusively practiced group predation. In summary, the CFU-based predation assay not only enabled the quantification of prey killing and consumption byLysobacterspp. but also provided insights into their mode of predation.


2015 ◽  
Vol 6 (6) ◽  
pp. 668-676 ◽  
Author(s):  
Paulo J Tavares ◽  
Tiago Ramos ◽  
Daniel Braga ◽  
Mario A P Vaz ◽  
Pedro Miguel Guimarães Pires Moreira

Purpose – Hybrid methods, wherefore numerical and experimental data are used to calculate a critical parameter, have been used for several years with great success in Experimental Mechanics and, in particular, in fracture mechanics. The purpose of this paper is to report on the comparison of the strain field from numerical modelling forecasts against the experimental data obtained with the digital image correlation method under Mode II loading in fatigue testing. The numerical dual boundary element method has been established in the past as a very reliable method near singular regions where stresses tend to grow abruptly. The results obtained from the strain data near the crack tip were used in Williams expansion and agree fairly well with both the numerical results and the analytical solution proposed for pure Mode II testing. Design/methodology/approach – The work presented in this note is experimental. The proposed methodology is of an hybrid experimental/numerical nature in that a numerical stress intensity factor calculation hinges upon a stress field obtained with an image method. Findings – The obtained results are an important step towards the development of a practical tool for crack behaviour prediction in fatigue dominated events. Research limitations/implications – The results also stress the necessity of improving the experimental techniques to a point where the methods can be applied in real-life solicitations outside of laboratory premises. Originality/value – Although several research teams around the globe are presently working in this field, the present research topic is original and the proposed methodology has been presented initially by the research team years ago.


2018 ◽  
Vol 35 (1) ◽  
pp. 395-410 ◽  
Author(s):  
Xianbei Huang ◽  
Yaojun Li ◽  
Zhuqing Liu ◽  
Wei Yang

Purpose The purpose of this paper is to obtain a better understanding of the rotor–stator interaction in the vaneless region of a centrifugal pump. Design/methodology/approach A third-order sub-grid scale (SGS) model containing the rotation rate tensor named the dynamic cubic non-linear model (DCNM) is used for simulating the flow field in a centrifugal pump with a vaned diffuser. The pressure coefficient and velocity distributions are compared with the experimental data. Focusing on the vaneless region, the pressure pulsation, Reynolds stress pulsation and Reynolds stress transport equation are analyzed. Findings The comparison of the calculation results with the experimental data indicates that the DCNM can accurately capture the distributions of pressure and velocity in the vaneless region. Based on the instantaneous pressure signals, the pressure pulsation is analyzed to show that in the vaneless region, the dominant frequency near the impeller is twice the blade passing frequency, whereas it is equal to the blade passing frequency near the diffuser. Further exploration of the Reynolds stress pulsation shows the correlation between the two variables. Additionally, the extreme low frequency of Reynolds stress near the diffuser is found to be related to the rotation instability. To explore the turbulence characteristics in the vaneless region, the Reynolds stress transportation equation is studied. In the vaneless region, the rotation term of the Reynolds stress transport equation is negligible compared to the production term, although the rotation instability is obvious near the diffuser. The production of the Reynolds stress plays the role of redistributing the energy from the uu component to the vv component, except for the region near the impeller outlet. Originality/value The third-order SGS model DCNM has proved to be promising in simulating the rotor–stator interaction. The analysis of the rotation instability and the Reynolds stress transport equation shed light on the further understanding of the rotor–stator interaction.


Sign in / Sign up

Export Citation Format

Share Document