Experimental study of a pitching and plunging wing

2018 ◽  
Vol 90 (7) ◽  
pp. 1136-1144 ◽  
Author(s):  
Dimitris Gkiolas ◽  
Demetri Yiasemides ◽  
Demetri Mathioulakis

Purpose The complex flow behavior over an oscillating aerodynamic body, e.g. a helicopter rotor blade, a rotating wind turbine blade or the wing of a maneuvering airplane involves combinations of pitching and plunging motions. As the parameters of the problem (Re, St and phase difference between these two motions) vary, a quasi-steady analysis fails to provide realistic results for the aerodynamic response of the moving body, whereas this study aims to provide reliable experimental data. Design/methodology/approach In the present study, a pitching and plunging mechanism was designed and built in a subsonic closed-circuit wind tunnel as well as a rectangular aluminum wing of a 2:1 aspect-ratio with a NACA64-418 airfoil, used in wind turbine blades. To measure the pressure distribution along the wing chord, a number of fast responding transducers were embedded into the mid span wing surface. Simultaneous pressure measurements were conducted along the wing chord for the Reynolds number of 0.85 × 106 for both steady and unsteady cases (pitching and plunging). A flow visualization technique was used to detect the flow separation line under steady conditions. Findings Elevated pressure fluctuations coincide with the flow separation line having been detected through surface flow visualization and flattened pressure distributions appear downstream of the flow separation line. Closed hysteresis loops of the lift coefficient versus angle of attack were measured for combined pitching and plunging motions. Practical implications The experimental data can be used for improvement of unsteady fluid mechanics problem solvers. Originality/value In the present study, a new installation was built allowing the aerodynamic study of oscillating wings performing pitching and plunging motions with prescribed frequencies and phase lags between the two motions. The experimental data can be used for improvement of computational fluid dynamics codes in case that the examined aerodynamic body is oscillating.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Majid Asli ◽  
Behnam Mashhadi Gholamali ◽  
Abolghasem Mesgarpour Tousi

Aerodynamic performance improvement of wind turbine blade is the key process to improve wind turbine performance in electricity generated and energy conversion in renewable energy sources concept. The flow behavior on wind turbine blades profile and the relevant phenomena like stall can be improved by some modifications. In the present paper, Humpback Whales flippers leading edge protuberances model as a novel passive stall control method was investigated on S809 as a thick airfoil. The airfoil was numerically analyzed by CFD method in Reynolds number of 106and aerodynamic coefficients in static angle of attacks were validated with the experimental data reported by Somers in NREL. Therefore, computational results for modified airfoil with sinusoidal wavy leading edge were presented. The results revealed that, at low angles of attacks before the stall region, lift coefficient decreases slightly rather than baseline model. However, the modified airfoil has a smooth stall trend while baseline airfoil lift coefficient decreases sharply due to the separation which occurred on suction side. According to the flow physics over the airfoils, leading edge bumps act as vortex generator so vortices containing high level of momentum make the flow remain attached to the surface of the airfoil at high angle of attack and prevent it from having a deep stall.


2014 ◽  
Vol 1051 ◽  
pp. 832-839 ◽  
Author(s):  
Kelvin Leung

This paper describes the testing of wind turbine blades with tubercles in two different ways: outdoor testing and flow visualization. In the outdoor testing, the tubercle pitch was varied for turbine blade lengths of 30 cm, 40 cm, and 50 cm. The pitch-to-length ratio of approximately 1/10 to 1/16 produced the most power output. In flow visualization, both tubercle pitch and amplitude were varied. Vortices created behind the tubercles were shown to increase lift by minimizing flow separation.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 547
Author(s):  
Jianjun Ye ◽  
Shehab Salem ◽  
Juan Wang ◽  
Yiwen Wang ◽  
Zonggang Du ◽  
...  

Recently, the Trailing-Edge Flap with Micro-Tab (TEF with Micro-Tab) has been exploited to enhance the performance of wind turbine blades. Moreover, it can also be used to generate more lift and delay the onset of stall. This study focused mostly on the use of TEF with Micro-Tab in wind turbine blades using NREL’s S-809 as a model airfoil. In particular, the benefits generated by TEF with Micro-Tab may be of great interest in the design of wind turbine blades. In this paper, an attempt was made to evaluate the influence of TEF with Micro-Tab on the performance of NREL’s S-809 airfoils. Firstly, a computational fluid dynamics (CFD) model for the airfoil NREL’s S-809 was established, and validated by comparison with previous studies and wind tunnel experimental data. Secondly, the effects of the flap position (H) and deflection angle (αF) on the flow behaviors were investigated. As a result, the effect of TEF on air-flow behavior was demonstrated by augmenting the pressure coefficient at the lower surface of the airfoil at flap position 80% chord length (C) and αF = 7.5°. Thirdly, the influence of TEF with Micro-Tab on the flow behaviors of the airfoil NREL’s S-809 was studied and discussed. Different Micro-Tab positions and constant TEF were examined. Finally, the effects of TEF with Micro-Tab on the aerodynamic characteristics of the S-809 with TEF were compared. The results showed that an increase in the maximum lift coefficient by 25% and a delay in the air-flow stall were accomplished due to opposite sign vortices, which was better than the standard airfoil and S-809 with TEF. Therefore, it was deduced that the benefits of TEF with Micro-Tab were apparent, especially at the lower surface of the airfoil. This particularly suggests that the developed model could be used as a new trend to modify the designs of wind turbine blades.


2021 ◽  
pp. 0309524X2110071
Author(s):  
Usman Butt ◽  
Shafqat Hussain ◽  
Stephan Schacht ◽  
Uwe Ritschel

Experimental investigations of wind turbine blades having NACA airfoils 0021 and 4412 with and without tubercles on the leading edge have been performed in a wind tunnel. It was found that the lift coefficient of the airfoil 0021 with tubercles was higher at Re = 1.2×105 and 1.69×105 in post critical region (at higher angle of attach) than airfoils without tubercles but this difference relatively diminished at higher Reynolds numbers and beyond indicating that there is no effect on the lift coefficients of airfoils with tubercles at higher Reynolds numbers whereas drag coefficient remains unchanged. It is noted that at Re = 1.69×105, the lift coefficient of airfoil without tubercles drops from 0.96 to 0.42 as the angle of attack increases from 15° to 20° which is about 56% and the corresponding values of lift coefficient for airfoil with tubercles are 0.86 and 0.7 at respective angles with18% drop.


2017 ◽  
Vol 79 (7-3) ◽  
Author(s):  
Iham F. Zidane ◽  
Khalid M. Saqr ◽  
Greg Swadener ◽  
Xianghong Ma ◽  
Mohamed F. Shehadeh

Gulf and South African countries have enormous potential for wind energy. However, the emergence of sand storms in this region postulates performance and reliability challenges on wind turbines. This study investigates the effects of debris flow on wind turbine blade performance. In this paper, two-dimensional incompressible Navier-Stokes equations and the transition SST turbulence model are used to analyze the aerodynamic performance of NACA 63415 airfoil under clean and sandy conditions. The numerical simulation of the airfoil under clean surface condition is performed at Reynolds number 460×103, and the numerical results have a good consistency with the experimental data. The Discrete Phase Model has been used to investigate the role sand particles play in the aerodynamic performance degradation. The pressure and lift coefficients of the airfoil have been computed under different sand particles flow rates. The performance of the airfoil under different angle of attacks has been studied. Results showed that the blade lift coefficient can deteriorate by 28% in conditions relevant to the Gulf and South African countries sand storms. As a result, the numerical simulation method has been verified to be economically available for accurate estimation of the sand particles effect on the wind turbine blades.


Author(s):  
K. J. Standish ◽  
C. P. van Dam

The adoption of blunt trailing edge airfoils for the inner regions of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide increased structural volume, but have also been found to improve the lift characteristics of airfoils and therefore allow for section shapes with a greater maximum thickness. Limited experimental data makes it difficult for wind turbine designers to consider and conduct tradeoff studies using these section shapes. This lack of experimental data precipitated the present analysis of blunt trailing edge airfoils using computational fluid dynamics. Several computational techniques are applied including a viscous/inviscid interaction method and several Reynolds-averaged Navier-Stokes methods.


2016 ◽  
Author(s):  
Akshay Basavaraj

In regions of low wind speed, overcoming the starting torque of a Vertical Axis Wind Turbine (VAWT) becomes a challenge aspect. In order to overcome this adversity, careful selection of airfoils for the turbine blades becomes a priority. This paper tries to address the issue utilizing an approach wherein by observing the effect of merging two airfoils. Two airfoils which are of varying camber and thickness are merged and their aerodynamic characteristics are evaluated using the software XFOIL 6.96. For a variation in angle of attack from 0 to 90°, aerodynamic analysis is done in order to observe the behavior of one quarter of the entire VAWT cycle. An objective function is developed so as to observe the maximum possible torque generated by these airfoils at Reynolds number varying from 15,000–120,000. Due to change in the value of CL observed at Low Reynolds Number using commercial CFD softwares, multiple objective functions are utilized to observe the behavior over a range of Reynolds number. An experimental co-relation between the cut-in velocity and the lift-coefficient of the airfoils is developed in order to predict the cut-in velocity of the interpolated airfoils. The airfoils used for this paper are NACA 0012, NACA 0018, FX 66 S196, Clark Y (smooth), PT 40, SD 7032, A 18, SD 7080, SG 6043 and SG 6040.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3330 ◽  
Author(s):  
Jianhua Xu ◽  
Zhonghua Han ◽  
Xiaochao Yan ◽  
Wenping Song

A new airfoil family, called NPU-MWA (Northwestern Polytechnical University Multi-megawatt Wind-turbine A-series) airfoils, was designed to improve both aerodynamic and structural performance, with the outboard airfoils being designed at high design lift coefficient and high Reynolds number, and the inboard airfoils being designed as flat-back airfoils. This article aims to design a multi-megawatt wind turbine blade in order to demonstrate the advantages of the NPU-MWA airfoils in improving wind energy capturing and structural weight reduction. The distributions of chord length and twist angle for a 5 MW wind turbine blade are optimized by a Kriging surrogate model-based optimizer, with aerodynamic performance being evaluated by blade element-momentum theory. The Reynolds-averaged Navier–Stokes equations solver was used to validate the improvement in aerodynamic performance. Results show that compared with an existing NREL (National Renewable Energy Laboratory) 5 MW blade, the maximum power coefficient of the optimized NPU 5 MW blade is larger, and the chord lengths at all span-wise sections are dramatically smaller, resulting in a significant structural weight reduction (9%). It is shown that the NPU-MWA airfoils feature excellent aerodynamic and structural performance for the design of multi-megawatt wind turbine blades.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Michal Kulak ◽  
Michal Lipian ◽  
Karol Zawadzki

Purpose This paper aims to discuss the results of the performance study of wind turbine blades equipped with winglets. An investigation focusses on small wind turbines (SWTs), where the winglets are recalled as one of the most promising concepts in terms of turbine efficiency increase. Design/methodology/approach To investigate a contribution of winglets to SWT aerodynamic efficiency, a wind tunnel experiment was performed at Lodz University of Technology. In parallel, computational fluid dynamics (CFD) simulations campaign was conducted with the ANSYS CFX software to investigate appearing flow structures in greater detail. Findings The research indicates the potential behind the application of winglets in low Reynolds flow conditions, while the CFD study enables the identification of crucial regions influencing the flow structure in the most significant degree. Research limitations/implications As the global effect on a whole rotor is a result of a small-scale geometrical feature, it is important to localise unveiled phenomena and the mechanisms behind their generation. Practical implications Even the slightest efficiency improvement in a distributed generation installation can promote such a solution amongst energy prosumers and increase their independence from limited natural resources. Originality/value The winglet-equipped blades of SWTs provide an opportunity to increase the device performance with relatively low cost and ease of implementation.


Author(s):  
Erin K. Clarke ◽  
Sylvester Abanteriba

This paper examines the impact on the power generation capacity of a wind turbine as a result of the modification of the shape of the blades of an existing wind turbine. The modification involves curving the blades in the direction of rotation resulting in an increase in generated lift and therefore an increase in the power output of the wind turbine. Two three-bladed models were tested in a wind tunnel, one original straight-bladed model and one modified model both of which were 0.84 m in diameter. A study of the methods of flow visualization for a wind turbine in a wind tunnel was investigated. The corresponding results are presented. It was discovered that the china clay method of flow visualization in conjunction with a strobe light gave a good indication of the direction of the airflow over the turbine blades as did condensed oil droplets from a smoke wand which presented a very clear indication of the span-wise flow. It was concluded from the investigation that curving the blade into the direction of rotation on a wind turbine produced a greater power output at the same wind speed as an unmodified wind turbine.


Sign in / Sign up

Export Citation Format

Share Document