A novel Ka-band MMIC coupled filter with harmonic suppression

Circuit World ◽  
2020 ◽  
Vol 46 (3) ◽  
pp. 169-173
Author(s):  
Jin Guan ◽  
Min Gong ◽  
Bo Gao

Purpose A novel Ka-band compact parallel-coupled microstrip bandpass filter with harmonic suppression performance has been designed, implemented and tested on GaAs MMIC. Design/methodology/approach This proposed filter consists of modified coupled-line units with T-shaped open-stubs. Findings The proposed filter with T-shaped open-stubs is valuable in performance with low loss at fundamental frequency, suppression at harmonic frequencies and small size. The simulation is based on full-wave electromagnetic analysis and the measurement is based on chip test. It shows an insertion loss below 1.2 dB, return loss better than 20 dB in the pass band and high than 28 dB suppression at harmonic frequencies. Originality/value This Ka-band MMIC filter with harmonic suppression is attractive for the millimeter-wave system.

Circuit World ◽  
2019 ◽  
Vol 45 (4) ◽  
pp. 287-291
Author(s):  
Jin Guan ◽  
Min Gong ◽  
Bo Gao ◽  
Yuxi Lu ◽  
Yu Lu

Purpose The purpose of this paper is to present a K-band modified hairpin bandpass filter on a planar circuit with harmonic suppression and compact size. Design/methodology/approach The inter-connect transmission lines of conventional hairpin filter are replayed by T-shaped open stub to achieve transmission zero for second harmonic. This filter is simulated and optimized by using electromagnetic simulation software and tested on-chip. Findings This proposed filter shows the return loss of better than −10dB, the insertion loss of better than 2 dB in pass-band and suppression of more than 40 dB at second harmonic. Originality/value The proposed filter can be designed on monolithic microwave integrated circuit, PCB or LTCC and it is useable for microwave and microwave and millimeter-wave systems.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1302
Author(s):  
Zhiyong Wu ◽  
Lei Zhang ◽  
Tingyin Ning ◽  
Hong Su ◽  
Irene Ling Li ◽  
...  

Surface plasmon polaritons (SPPs) have been attracting considerable attention owing to their unique capabilities of manipulating light. However, the intractable dispersion and high loss are two major obstacles for attaining high-performance plasmonic devices. Here, a graphene nanoribbon gap waveguide (GNRGW) is proposed for guiding dispersionless gap SPPs (GSPPs) with deep-subwavelength confinement and low loss. An analytical model is developed to analyze the GSPPs, in which a reflection phase shift is employed to successfully deal with the influence caused by the boundaries of the graphene nanoribbon (GNR). It is demonstrated that a pulse with a 4 μm bandwidth and a 10 nm mode width can propagate in the linear passive system without waveform distortion, which is very robust against the shape change of the GNR. The decrease in the pulse amplitude is only 10% for a propagation distance of 1 μm. Furthermore, an array consisting of several GNRGWs is employed as a multichannel optical switch. When the separation is larger than 40 nm, each channel can be controlled independently by tuning the chemical potential of the corresponding GNR. The proposed GNRGW may raise great interest in studying dispersionless and low-loss nanophotonic devices, with potential applications in the distortionless transmission of nanoscale signals, electro-optic nanocircuits, and high-density on-chip communications.


2013 ◽  
Vol 21 (11) ◽  
pp. 13522 ◽  
Author(s):  
Justin B. Spring ◽  
Patrick S. Salter ◽  
Benjamin J. Metcalf ◽  
Peter C. Humphreys ◽  
Merritt Moore ◽  
...  
Keyword(s):  
Low Loss ◽  

Sign in / Sign up

Export Citation Format

Share Document