Data cleaning issues in class imbalanced datasets: instance selection and missing values imputation for one-class classifiers

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhenyuan Wang ◽  
Chih-Fong Tsai ◽  
Wei-Chao Lin

PurposeClass imbalance learning, which exists in many domain problem datasets, is an important research topic in data mining and machine learning. One-class classification techniques, which aim to identify anomalies as the minority class from the normal data as the majority class, are one representative solution for class imbalanced datasets. Since one-class classifiers are trained using only normal data to create a decision boundary for later anomaly detection, the quality of the training set, i.e. the majority class, is one key factor that affects the performance of one-class classifiers.Design/methodology/approachIn this paper, we focus on two data cleaning or preprocessing methods to address class imbalanced datasets. The first method examines whether performing instance selection to remove some noisy data from the majority class can improve the performance of one-class classifiers. The second method combines instance selection and missing value imputation, where the latter is used to handle incomplete datasets that contain missing values.FindingsThe experimental results are based on 44 class imbalanced datasets; three instance selection algorithms, including IB3, DROP3 and the GA, the CART decision tree for missing value imputation, and three one-class classifiers, which include OCSVM, IFOREST and LOF, show that if the instance selection algorithm is carefully chosen, performing this step could improve the quality of the training data, which makes one-class classifiers outperform the baselines without instance selection. Moreover, when class imbalanced datasets contain some missing values, combining missing value imputation and instance selection, regardless of which step is first performed, can maintain similar data quality as datasets without missing values.Originality/valueThe novelty of this paper is to investigate the effect of performing instance selection on the performance of one-class classifiers, which has never been done before. Moreover, this study is the first attempt to consider the scenario of missing values that exist in the training set for training one-class classifiers. In this case, performing missing value imputation and instance selection with different orders are compared.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Min-Wei Huang ◽  
Wei-Chao Lin ◽  
Chih-Fong Tsai

Many real-world medical datasets contain some proportion of missing (attribute) values. In general, missing value imputation can be performed to solve this problem, which is to provide estimations for the missing values by a reasoning process based on the (complete) observed data. However, if the observed data contain some noisy information or outliers, the estimations of the missing values may not be reliable or may even be quite different from the real values. The aim of this paper is to examine whether a combination of instance selection from the observed data and missing value imputation offers better performance than performing missing value imputation alone. In particular, three instance selection algorithms, DROP3, GA, and IB3, and three imputation algorithms, KNNI, MLP, and SVM, are used in order to find out the best combination. The experimental results show that that performing instance selection can have a positive impact on missing value imputation over the numerical data type of medical datasets, and specific combinations of instance selection and imputation methods can improve the imputation results over the mixed data type of medical datasets. However, instance selection does not have a definitely positive impact on the imputation result for categorical medical datasets.


Author(s):  
Caio Ribeiro ◽  
Alex A. Freitas

AbstractLongitudinal datasets of human ageing studies usually have a high volume of missing data, and one way to handle missing values in a dataset is to replace them with estimations. However, there are many methods to estimate missing values, and no single method is the best for all datasets. In this article, we propose a data-driven missing value imputation approach that performs a feature-wise selection of the best imputation method, using known information in the dataset to rank the five methods we selected, based on their estimation error rates. We evaluated the proposed approach in two sets of experiments: a classifier-independent scenario, where we compared the applicabilities and error rates of each imputation method; and a classifier-dependent scenario, where we compared the predictive accuracy of Random Forest classifiers generated with datasets prepared using each imputation method and a baseline approach of doing no imputation (letting the classification algorithm handle the missing values internally). Based on our results from both sets of experiments, we concluded that the proposed data-driven missing value imputation approach generally resulted in models with more accurate estimations for missing data and better performing classifiers, in longitudinal datasets of human ageing. We also observed that imputation methods devised specifically for longitudinal data had very accurate estimations. This reinforces the idea that using the temporal information intrinsic to longitudinal data is a worthwhile endeavour for machine learning applications, and that can be achieved through the proposed data-driven approach.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tressy Thomas ◽  
Enayat Rajabi

PurposeThe primary aim of this study is to review the studies from different dimensions including type of methods, experimentation setup and evaluation metrics used in the novel approaches proposed for data imputation, particularly in the machine learning (ML) area. This ultimately provides an understanding about how well the proposed framework is evaluated and what type and ratio of missingness are addressed in the proposals. The review questions in this study are (1) what are the ML-based imputation methods studied and proposed during 2010–2020? (2) How the experimentation setup, characteristics of data sets and missingness are employed in these studies? (3) What metrics were used for the evaluation of imputation method?Design/methodology/approachThe review process went through the standard identification, screening and selection process. The initial search on electronic databases for missing value imputation (MVI) based on ML algorithms returned a large number of papers totaling at 2,883. Most of the papers at this stage were not exactly an MVI technique relevant to this study. The literature reviews are first scanned in the title for relevancy, and 306 literature reviews were identified as appropriate. Upon reviewing the abstract text, 151 literature reviews that are not eligible for this study are dropped. This resulted in 155 research papers suitable for full-text review. From this, 117 papers are used in assessment of the review questions.FindingsThis study shows that clustering- and instance-based algorithms are the most proposed MVI methods. Percentage of correct prediction (PCP) and root mean square error (RMSE) are most used evaluation metrics in these studies. For experimentation, majority of the studies sourced the data sets from publicly available data set repositories. A common approach is that the complete data set is set as baseline to evaluate the effectiveness of imputation on the test data sets with artificially induced missingness. The data set size and missingness ratio varied across the experimentations, while missing datatype and mechanism are pertaining to the capability of imputation. Computational expense is a concern, and experimentation using large data sets appears to be a challenge.Originality/valueIt is understood from the review that there is no single universal solution to missing data problem. Variants of ML approaches work well with the missingness based on the characteristics of the data set. Most of the methods reviewed lack generalization with regard to applicability. Another concern related to applicability is the complexity of the formulation and implementation of the algorithm. Imputations based on k-nearest neighbors (kNN) and clustering algorithms which are simple and easy to implement make it popular across various domains.


2017 ◽  
Author(s):  
Runmin Wei ◽  
Jingye Wang ◽  
Mingming Su ◽  
Erik Jia ◽  
Tianlu Chen ◽  
...  

AbstractIntroductionMissing values exist widely in mass-spectrometry (MS) based metabolomics data. Various methods have been applied for handling missing values, but the selection of methods can significantly affect following data analyses and interpretations. According to the definition, there are three types of missing values, missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR).ObjectivesThe aim of this study was to comprehensively compare common imputation methods for different types of missing values using two separate metabolomics data sets (977 and 198 serum samples respectively) to propose a strategy to deal with missing values in metabolomics studies.MethodsImputation methods included zero, half minimum (HM), mean, median, random forest (RF), singular value decomposition (SVD), k-nearest neighbors (kNN), and quantile regression imputation of left-censored data (QRILC). Normalized root mean squared error (NRMSE) and NRMSE-based sum of ranks (SOR) were applied to evaluate the imputation accuracy for MCAR/MAR and MNAR correspondingly. Principal component analysis (PCA)/partial least squares (PLS)-Procrustes sum of squared error were used to evaluate the overall sample distribution. Student’s t-test followed by Pearson correlation analysis was conducted to evaluate the effect of imputation on univariate statistical analysis.ResultsOur findings demonstrated that RF imputation performed the best for MCAR/MAR and QRILC was the favored one for MNAR.ConclusionCombining with “modified 80% rule”, we proposed a comprehensive strategy and developed a public-accessible web-tool for missing value imputation in metabolomics data.


Author(s):  
Jesmeen Mohd Zebaral Hoque ◽  
Jakir Hossen ◽  
Shohel Sayeed ◽  
Chy. Mohammed Tawsif K. ◽  
Jaya Ganesan ◽  
...  

Recently, the industry of healthcare started generating a large volume of datasets. If hospitals can employ the data, they could easily predict the outcomes and provide better treatments at early stages with low cost. Here, data analytics (DA) was used to make correct decisions through proper analysis and prediction. However, inappropriate data may lead to flawed analysis and thus yield unacceptable conclusions. Hence, transforming the improper data from the entire data set into useful data is essential. Machine learning (ML) technique was used to overcome the issues due to incomplete data. A new architecture, automatic missing value imputation (AMVI) was developed to predict missing values in the dataset, including data sampling and feature selection. Four prediction models (i.e., logistic regression, support vector machine (SVM), AdaBoost, and random forest algorithms) were selected from the well-known classification. The complete AMVI architecture performance was evaluated using a structured data set obtained from the UCI repository. Accuracy of around 90% was achieved. It was also confirmed from cross-validation that the trained ML model is suitable and not over-fitted. This trained model is developed based on the dataset, which is not dependent on a specific environment. It will train and obtain the outperformed model depending on the data available.


2019 ◽  
Author(s):  
Tabea Kossen ◽  
Michelle Livne ◽  
Vince I Madai ◽  
Ivana Galinovic ◽  
Dietmar Frey ◽  
...  

AbstractBackground and purposeHandling missing values is a prevalent challenge in the analysis of clinical data. The rise of data-driven models demands an efficient use of the available data. Methods to impute missing values are thus crucial. Here, we developed a publicly available framework to test different imputation methods and compared their impact in a typical stroke clinical dataset as a use case.MethodsA clinical dataset based on the 1000Plus stroke study with 380 completed-entries patients was used. 13 common clinical parameters including numerical and categorical values were selected. Missing values in a missing-at-random (MAR) and missing-completely-at-random (MCAR) fashion from 0% to 60% were simulated and consequently imputed using the mean, hot-deck, multiple imputation by chained equations, expectation maximization method and listwise deletion. The performance was assessed by the root mean squared error, the absolute bias and the performance of a linear model for discharge mRS prediction.ResultsListwise deletion was the worst performing method and started to be significantly worse than any imputation method from 2% (MAR) and 3% (MCAR) missing values on. The underlying missing value mechanism seemed to have a crucial influence on the identified best performing imputation method. Consequently no single imputation method outperformed all others. A significant performance drop of the linear model started from 11% (MAR+MCAR) and 18% (MCAR) missing values.ConclusionsIn the presented case study of a typical clinical stroke dataset we confirmed that listwise deletion should be avoided for dealing with missing values. Our findings indicate that the underlying missing value mechanism and other dataset characteristics strongly influence the best choice of imputation method. For future studies with similar data structure, we thus suggest to use the developed framework in this study to select the most suitable imputation method for a given dataset prior to analysis.


2017 ◽  
Vol 23 (3) ◽  
pp. 260-278 ◽  
Author(s):  
Panagiotis Loukopoulos ◽  
George Zolkiewski ◽  
Ian Bennett ◽  
Pericles Pilidis ◽  
Fang Duan ◽  
...  

Purpose Centrifugal compressors are integral components in oil industry, thus effective maintenance is required. Condition-based maintenance and prognostics and health management (CBM/PHM) have been gaining popularity. CBM/PHM can also be performed remotely leading to e-maintenance. Its success depends on the quality of the data used for analysis and decision making. A major issue associated with it is the missing data. Their presence may compromise the information within a set, causing bias or misleading results. Addressing this matter is crucial. The purpose of this paper is to review and compare the most widely used imputation techniques in a case study using condition monitoring measurements from an operational industrial centrifugal compressor. Design/methodology/approach Brief overview and comparison of most widely used imputation techniques using a complete set with artificial missing values. They were tested regarding the effects of the amount, the location within the set and the variable containing the missing values. Findings Univariate and multivariate imputation techniques were compared, with the latter offering the smallest error levels. They seemed unaffected by the amount or location of the missing data although they were affected by the variable containing them. Research limitations/implications During the analysis, it was assumed that at any time only one variable contained missing data. Further research is still required to address this point. Originality/value This study can serve as a guide for selecting the appropriate imputation method for missing values in centrifugal compressor condition monitoring data.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Heru Nugroho ◽  
Nugraha Priya Utama ◽  
Kridanto Surendro

AbstractA missing value is one of the factors that often cause incomplete data in almost all studies, even those that are well-designed and controlled. It can also decrease a study’s statistical power or result in inaccurate estimations and conclusions. Hence, data normalization and missing value handling are considered the major problems in the data pre-processing stage, while classification algorithms are adopted to handle numerical features. In cases where the observed data contained outliers, the missing value estimated results are sometimes unreliable or even differ greatly from the true values. Therefore, this study aims to propose the combination of normalization and outlier removals before imputing missing values on the class center-based firefly algorithm method (ON  +  C3FA). Moreover, some standard imputation techniques like mean, a random value, regression, as well as multiple imputation, KNN imputation, and decision tree (DT)-based missing value imputation were utilized as a comparison of the proposed method. Experimental results on the sonar dataset showed normalization and outlier removals effect in the methods. According to the proposed method (ON  +  C3FA), AUC, accuracy, F1-Score, Precision, Recall, and AUC-PR had 0.972, 0.906, 0.906, 0.908, 0.906, 0.61 respectively. The result showed combining normalization and outlier removals in C3-FA (ON  +  C3FA) was an efficient technique for obtaining actual data in handling missing values, and it also outperformed the previous studies methods with r and RMSE values of 0.935 and 0.02. Meanwhile, the Dks value obtained from this technique was 0.04, which indicated that it could maintain the values or distribution accuracy.


2017 ◽  
Author(s):  
Runmin Wei ◽  
Jingye Wang ◽  
Erik Jia ◽  
Tianlu Chen ◽  
Yan Ni ◽  
...  

AbstractLeft-censored missing values commonly exist in targeted metabolomics datasets and can be considered as missing not at random (MNAR). Improper data processing procedures for missing values will cause adverse impacts on subsequent statistical analyses. However, few imputation methods have been developed and applied to the situation of MNAR in the field of metabolomics. Thus, a practical left-censored missing value imputation method is urgently needed. We have developed an iterative Gibbs sampler based left-censored missing value imputation approach (GSimp). We compared GSimp with other three imputation methods on two real-world targeted metabolomics datasets and one simulation dataset using our imputation evaluation pipeline. The results show that GSimp outperforms other imputation methods in terms of imputation accuracy, observation distribution, univariate and multivariate analyses, and statistical sensitivity. The R code for GSimp, evaluation pipeline, vignette, real-world and simulated targeted metabolomics datasets are available at: https://github.com/WandeRum/GSimp.Author summaryMissing values caused by the limit of detection/quantification (LOD/LOQ) were widely observed in mass spectrometry (MS)-based targeted metabolomics studies and could be recognized as missing not at random (MNAR). MNAR leads to biased parameter estimations and jeopardizes following statistical analyses in different aspects, such as distorting sample distribution, impairing statistical power, etc. Although a wide range of missing value imputation methods was developed for –omics studies, a limited number of methods was designed appropriately for the situation of MNAR currently. To alleviate problems caused by MNAR and facilitate targeted metabolomics studies, we developed a Gibbs sampler based missing value imputation approach, called GSimp, which is public-accessible on GitHub. And we compared our method with existing approaches using an imputation evaluation pipeline on real-world and simulated metabolomics datasets to demonstrate the superiority of our method from different perspectives.


Sign in / Sign up

Export Citation Format

Share Document