scholarly journals A framework for testing different imputation methods for tabular datasets

2019 ◽  
Author(s):  
Tabea Kossen ◽  
Michelle Livne ◽  
Vince I Madai ◽  
Ivana Galinovic ◽  
Dietmar Frey ◽  
...  

AbstractBackground and purposeHandling missing values is a prevalent challenge in the analysis of clinical data. The rise of data-driven models demands an efficient use of the available data. Methods to impute missing values are thus crucial. Here, we developed a publicly available framework to test different imputation methods and compared their impact in a typical stroke clinical dataset as a use case.MethodsA clinical dataset based on the 1000Plus stroke study with 380 completed-entries patients was used. 13 common clinical parameters including numerical and categorical values were selected. Missing values in a missing-at-random (MAR) and missing-completely-at-random (MCAR) fashion from 0% to 60% were simulated and consequently imputed using the mean, hot-deck, multiple imputation by chained equations, expectation maximization method and listwise deletion. The performance was assessed by the root mean squared error, the absolute bias and the performance of a linear model for discharge mRS prediction.ResultsListwise deletion was the worst performing method and started to be significantly worse than any imputation method from 2% (MAR) and 3% (MCAR) missing values on. The underlying missing value mechanism seemed to have a crucial influence on the identified best performing imputation method. Consequently no single imputation method outperformed all others. A significant performance drop of the linear model started from 11% (MAR+MCAR) and 18% (MCAR) missing values.ConclusionsIn the presented case study of a typical clinical stroke dataset we confirmed that listwise deletion should be avoided for dealing with missing values. Our findings indicate that the underlying missing value mechanism and other dataset characteristics strongly influence the best choice of imputation method. For future studies with similar data structure, we thus suggest to use the developed framework in this study to select the most suitable imputation method for a given dataset prior to analysis.

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Marietta Kokla ◽  
Jyrki Virtanen ◽  
Marjukka Kolehmainen ◽  
Jussi Paananen ◽  
Kati Hanhineva

Abstract Background LC-MS technology makes it possible to measure the relative abundance of numerous molecular features of a sample in single analysis. However, especially non-targeted metabolite profiling approaches generate vast arrays of data that are prone to aberrations such as missing values. No matter the reason for the missing values in the data, coherent and complete data matrix is always a pre-requisite for accurate and reliable statistical analysis. Therefore, there is a need for proper imputation strategies that account for the missingness and reduce the bias in the statistical analysis. Results Here we present our results after evaluating nine imputation methods in four different percentages of missing values of different origin. The performance of each imputation method was analyzed by Normalized Root Mean Squared Error (NRMSE). We demonstrated that random forest (RF) had the lowest NRMSE in the estimation of missing values for Missing at Random (MAR) and Missing Completely at Random (MCAR). In case of absent values due to Missing Not at Random (MNAR), the left truncated data was best imputed with minimum value imputation. We also tested the different imputation methods for datasets containing missing data of various origin, and RF was the most accurate method in all cases. The results were obtained by repeating the evaluation process 100 times with the use of metabolomics datasets where the missing values were introduced to represent absent data of different origin. Conclusion Type and rate of missingness affects the performance and suitability of imputation methods. RF-based imputation method performs best in most of the tested scenarios, including combinations of different types and rates of missingness. Therefore, we recommend using random forest-based imputation for imputing missing metabolomics data, and especially in situations where the types of missingness are not known in advance.


Author(s):  
Caio Ribeiro ◽  
Alex A. Freitas

AbstractLongitudinal datasets of human ageing studies usually have a high volume of missing data, and one way to handle missing values in a dataset is to replace them with estimations. However, there are many methods to estimate missing values, and no single method is the best for all datasets. In this article, we propose a data-driven missing value imputation approach that performs a feature-wise selection of the best imputation method, using known information in the dataset to rank the five methods we selected, based on their estimation error rates. We evaluated the proposed approach in two sets of experiments: a classifier-independent scenario, where we compared the applicabilities and error rates of each imputation method; and a classifier-dependent scenario, where we compared the predictive accuracy of Random Forest classifiers generated with datasets prepared using each imputation method and a baseline approach of doing no imputation (letting the classification algorithm handle the missing values internally). Based on our results from both sets of experiments, we concluded that the proposed data-driven missing value imputation approach generally resulted in models with more accurate estimations for missing data and better performing classifiers, in longitudinal datasets of human ageing. We also observed that imputation methods devised specifically for longitudinal data had very accurate estimations. This reinforces the idea that using the temporal information intrinsic to longitudinal data is a worthwhile endeavour for machine learning applications, and that can be achieved through the proposed data-driven approach.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pooja Rani ◽  
Rajneesh Kumar ◽  
Anurag Jain

PurposeDecision support systems developed using machine learning classifiers have become a valuable tool in predicting various diseases. However, the performance of these systems is adversely affected by the missing values in medical datasets. Imputation methods are used to predict these missing values. In this paper, a new imputation method called hybrid imputation optimized by the classifier (HIOC) is proposed to predict missing values efficiently.Design/methodology/approachThe proposed HIOC is developed by using a classifier to combine multivariate imputation by chained equations (MICE), K nearest neighbor (KNN), mean and mode imputation methods in an optimum way. Performance of HIOC has been compared to MICE, KNN, and mean and mode methods. Four classifiers support vector machine (SVM), naive Bayes (NB), random forest (RF) and decision tree (DT) have been used to evaluate the performance of imputation methods.FindingsThe results show that HIOC performed efficiently even with a high rate of missing values. It had reduced root mean square error (RMSE) up to 17.32% in the heart disease dataset and 34.73% in the breast cancer dataset. Correct prediction of missing values improved the accuracy of the classifiers in predicting diseases. It increased classification accuracy up to 18.61% in the heart disease dataset and 6.20% in the breast cancer dataset.Originality/valueThe proposed HIOC is a new hybrid imputation method that can efficiently predict missing values in any medical dataset.


2010 ◽  
Vol 6 (3) ◽  
pp. 1-10 ◽  
Author(s):  
Shichao Zhang

In this paper, the author designs an efficient method for imputing iteratively missing target values with semi-parametric kernel regression imputation, known as the semi-parametric iterative imputation algorithm (SIIA). While there is little prior knowledge on the datasets, the proposed iterative imputation method, which impute each missing value several times until the algorithms converges in each model, utilize a substantially useful amount of information. Additionally, this information includes occurrences involving missing values as well as capturing the real dataset distribution easier than the parametric or nonparametric imputation techniques. Experimental results show that the author’s imputation methods outperform the existing methods in terms of imputation accuracy, in particular in the situation with high missing ratio.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1792
Author(s):  
Shu-Fen Huang ◽  
Ching-Hsue Cheng

Medical data usually have missing values; hence, imputation methods have become an important issue. In previous studies, many imputation methods based on variable data had a multivariate normal distribution, such as expectation-maximization and regression-based imputation. These assumptions may lead to deviations in the results, which sometimes create a bottleneck. In addition, directly deleting instances with missing values may have several problems, such as losing important data, producing invalid research samples, and leading to research deviations. Therefore, this study proposed a safe-region imputation method for handling medical data with missing values; we also built a medical prediction model and compared the removed missing values with imputation methods in terms of the generated rules, accuracy, and AUC. First, this study used the kNN imputation, multiple imputation, and the proposed imputation to impute the missing data and then applied four attribute selection methods to select the important attributes. Then, we used the decision tree (C4.5), random forest, REP tree, and LMT classifier to generate the rules, accuracy, and AUC for comparison. Because there were four datasets with imbalanced classes (asymmetric classes), the AUC was an important criterion. In the experiment, we collected four open medical datasets from UCI and one international stroke trial dataset. The results show that the proposed safe-region imputation is better than the listing imputation methods and after imputing offers better results than directly deleting instances with missing values in the number of rules, accuracy, and AUC. These results will provide a reference for medical stakeholders.


2020 ◽  
Vol 48 (14) ◽  
pp. e83-e83 ◽  
Author(s):  
Shisheng Wang ◽  
Wenxue Li ◽  
Liqiang Hu ◽  
Jingqiu Cheng ◽  
Hao Yang ◽  
...  

Abstract Mass spectrometry (MS)-based quantitative proteomics experiments frequently generate data with missing values, which may profoundly affect downstream analyses. A wide variety of imputation methods have been established to deal with the missing-value issue. To date, however, there is a scarcity of efficient, systematic, and easy-to-handle tools that are tailored for proteomics community. Herein, we developed a user-friendly and powerful stand-alone software, NAguideR, to enable implementation and evaluation of different missing value methods offered by 23 widely used missing-value imputation algorithms. NAguideR further evaluates data imputation results through classic computational criteria and, unprecedentedly, proteomic empirical criteria, such as quantitative consistency between different charge-states of the same peptide, different peptides belonging to the same proteins, and individual proteins participating protein complexes and functional interactions. We applied NAguideR into three label-free proteomic datasets featuring peptide-level, protein-level, and phosphoproteomic variables respectively, all generated by data independent acquisition mass spectrometry (DIA-MS) with substantial biological replicates. The results indicate that NAguideR is able to discriminate the optimal imputation methods that are facilitating DIA-MS experiments over those sub-optimal and low-performance algorithms. NAguideR further provides downloadable tables and figures supporting flexible data analysis and interpretation. NAguideR is freely available at http://www.omicsolution.org/wukong/NAguideR/ and the source code: https://github.com/wangshisheng/NAguideR/.


2017 ◽  
Author(s):  
Runmin Wei ◽  
Jingye Wang ◽  
Mingming Su ◽  
Erik Jia ◽  
Tianlu Chen ◽  
...  

AbstractIntroductionMissing values exist widely in mass-spectrometry (MS) based metabolomics data. Various methods have been applied for handling missing values, but the selection of methods can significantly affect following data analyses and interpretations. According to the definition, there are three types of missing values, missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR).ObjectivesThe aim of this study was to comprehensively compare common imputation methods for different types of missing values using two separate metabolomics data sets (977 and 198 serum samples respectively) to propose a strategy to deal with missing values in metabolomics studies.MethodsImputation methods included zero, half minimum (HM), mean, median, random forest (RF), singular value decomposition (SVD), k-nearest neighbors (kNN), and quantile regression imputation of left-censored data (QRILC). Normalized root mean squared error (NRMSE) and NRMSE-based sum of ranks (SOR) were applied to evaluate the imputation accuracy for MCAR/MAR and MNAR correspondingly. Principal component analysis (PCA)/partial least squares (PLS)-Procrustes sum of squared error were used to evaluate the overall sample distribution. Student’s t-test followed by Pearson correlation analysis was conducted to evaluate the effect of imputation on univariate statistical analysis.ResultsOur findings demonstrated that RF imputation performed the best for MCAR/MAR and QRILC was the favored one for MNAR.ConclusionCombining with “modified 80% rule”, we proposed a comprehensive strategy and developed a public-accessible web-tool for missing value imputation in metabolomics data.


2019 ◽  
Vol 25 (6) ◽  
pp. 48-54
Author(s):  
Pinar Cihan ◽  
Zeynep Banu Ozger

Missing values in datasets present an important problem for traditional and modern statistical methods. Many statistical methods have been developed to analyze the complete datasets. However, most of the real world datasets contain missing values. Therefore, in recent years, many methods have been developed to overcome the missing value problem. Heuristic methods have become popular in this field due to their superior performance in many other optimization problems. This paper introduces an Artificial Bee Colony algorithm based new approach for missing value imputation in the four real-world discrete datasets. At the proposed Artificial Bee Colony Imputation (ABCimp) method, Bayesian Optimization is integrated into the Artificial Bee Colony algorithm. The performance of the proposed technique is compared with other well-known six methods, which are Mean, Median, k Nearest Neighbor (k-NN), Multivariate Equation by Chained Equation (MICE), Singular Value Decomposition (SVD), and MissForest (MF). The classification error and root mean square error are used as the evaluation criteria of the imputation methods performance and the Naive Bayes algorithm is used as the classifier. The empirical results show that state-of-the-art ABCimp performs better than the other most popular imputation methods at the variable missing rates ranging from 3 % to 15 %.


2019 ◽  
Vol 6 (339) ◽  
pp. 73-98
Author(s):  
Małgorzata Aleksandra Misztal

The problem of incomplete data and its implications for drawing valid conclusions from statistical analyses is not related to any particular scientific domain, it arises in economics, sociology, education, behavioural sciences or medicine. Almost all standard statistical methods presume that every object has information on every variable to be included in the analysis and the typical approach to missing data is simply to delete them. However, this leads to ineffective and biased analysis results and is not recommended in the literature. The state of the art technique for handling missing data is multiple imputation. In the paper, some selected multiple imputation methods were taken into account. Special attention was paid to using principal components analysis (PCA) as an imputation method. The goal of the study was to assess the quality of PCA‑based imputations as compared to two other multiple imputation techniques: multivariate imputation by chained equations (MICE) and missForest. The comparison was made by artificially simulating different proportions (10–50%) and mechanisms of missing data using 10 complete data sets from the UCI repository of machine learning databases. Then, missing values were imputed with the use of MICE, missForest and the PCA‑based method (MIPCA). The normalised root mean square error (NRMSE) was calculated as a measure of imputation accuracy. On the basis of the conducted analyses, missForest can be recommended as a multiple imputation method providing the lowest rates of imputation errors for all types of missingness. PCA‑based imputation does not perform well in terms of accuracy.


Author(s):  
Brett K Beaulieu-Jones ◽  
Daniel R Lavage ◽  
John W Snyder ◽  
Jason H Moore ◽  
Sarah A Pendergrass ◽  
...  

BACKGROUND Missing data is a challenge for all studies; however, this is especially true for electronic health record (EHR)-based analyses. Failure to appropriately consider missing data can lead to biased results. While there has been extensive theoretical work on imputation, and many sophisticated methods are now available, it remains quite challenging for researchers to implement these methods appropriately. Here, we provide detailed procedures for when and how to conduct imputation of EHR laboratory results. OBJECTIVE The objective of this study was to demonstrate how the mechanism of missingness can be assessed, evaluate the performance of a variety of imputation methods, and describe some of the most frequent problems that can be encountered. METHODS We analyzed clinical laboratory measures from 602,366 patients in the EHR of Geisinger Health System in Pennsylvania, USA. Using these data, we constructed a representative set of complete cases and assessed the performance of 12 different imputation methods for missing data that was simulated based on 4 mechanisms of missingness (missing completely at random, missing not at random, missing at random, and real data modelling). RESULTS Our results showed that several methods, including variations of Multivariate Imputation by Chained Equations (MICE) and softImpute, consistently imputed missing values with low error; however, only a subset of the MICE methods was suitable for multiple imputation. CONCLUSIONS The analyses we describe provide an outline of considerations for dealing with missing EHR data, steps that researchers can perform to characterize missingness within their own data, and an evaluation of methods that can be applied to impute clinical data. While the performance of methods may vary between datasets, the process we describe can be generalized to the majority of structured data types that exist in EHRs, and all of our methods and code are publicly available.


Sign in / Sign up

Export Citation Format

Share Document