Attack detection in medical Internet of things using optimized deep learning: enhanced security in healthcare sector

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
J Aruna Santhi ◽  
G Vijaya Saradhi

PurposeThis paper tactics to implement the attack detection in medical Internet of things (IoT) devices using improved deep learning architecture for accomplishing the concept bring your own device (BYOD). Here, a simulation-based hospital environment is modeled where many IoT devices or medical equipment are communicated with each other. The node or the device, which is creating the attack are recognized with the support of attribute collection. The dataset pertaining to the attack detection in medical IoT is gathered from each node that is considered as features. These features are subjected to a deep belief network (DBN), which is a part of deep learning algorithm. Despite the existing DBN, the number of hidden neurons of DBN is tuned or optimized correctly with the help of a hybrid meta-heuristic algorithm by merging grasshopper optimization algorithm (GOA) and spider monkey optimization (SMO) in order to enhance the accuracy of detection. The hybrid algorithm is termed as local leader phase-based GOA (LLP-GOA). The DBN is used to train the nodes by creating the data library with attack details, thus maintaining accurate detection during testing.Design/methodology/approachThis paper has presented novel attack detection in medical IoT devices using improved deep learning architecture as BYOD. With this, this paper aims to show the high convergence and better performance in detecting attacks in the hospital network.FindingsFrom the analysis, the overall performance analysis of the proposed LLP-GOA-based DBN in terms of accuracy was 0.25% better than particle swarm optimization (PSO)-DBN, 0.15% enhanced than grey wolf algorithm (GWO)-DBN, 0.26% enhanced than SMO-DBN and 0.43% enhanced than GOA-DBN. Similarly, the accuracy of the proposed LLP-GOA-DBN model was 13% better than support vector machine (SVM), 5.4% enhanced than k-nearest neighbor (KNN), 8.7% finer than neural network (NN) and 3.5% enhanced than DBN.Originality/valueThis paper adopts a hybrid algorithm termed as LLP-GOA for the accurate detection of attacks in medical IoT for improving the enhanced security in healthcare sector using the optimized deep learning. This is the first work which utilizes LLP-GOA algorithm for improving the performance of DBN for enhancing the security in the healthcare sector.

2020 ◽  
Vol 13 (3) ◽  
pp. 365-388
Author(s):  
Asha Sukumaran ◽  
Thomas Brindha

PurposeThe humans are gifted with the potential of recognizing others by their uniqueness, in addition with more other demographic characteristics such as ethnicity (or race), gender and age, respectively. Over the decades, a vast count of researchers had undergone in the field of psychological, biological and cognitive sciences to explore how the human brain characterizes, perceives and memorizes faces. Moreover, certain computational advancements have been developed to accomplish several insights into this issue.Design/methodology/approachThis paper intends to propose a new race detection model using face shape features. The proposed model includes two key phases, namely. (a) feature extraction (b) detection. The feature extraction is the initial stage, where the face color and shape based features get mined. Specifically, maximally stable extremal regions (MSER) and speeded-up robust transform (SURF) are extracted under shape features and dense color feature are extracted as color feature. Since, the extracted features are huge in dimensions; they are alleviated under principle component analysis (PCA) approach, which is the strongest model for solving “curse of dimensionality”. Then, the dimensional reduced features are subjected to deep belief neural network (DBN), where the race gets detected. Further, to make the proposed framework more effective with respect to prediction, the weight of DBN is fine tuned with a new hybrid algorithm referred as lion mutated and updated dragon algorithm (LMUDA), which is the conceptual hybridization of lion algorithm (LA) and dragonfly algorithm (DA).FindingsThe performance of proposed work is compared over other state-of-the-art models in terms of accuracy and error performance. Moreover, LMUDA attains high accuracy at 100th iteration with 90% of training, which is 11.1, 8.8, 5.5 and 3.3% better than the performance when learning percentage (LP) = 50%, 60%, 70%, and 80%, respectively. More particularly, the performance of proposed DBN + LMUDA is 22.2, 12.5 and 33.3% better than the traditional classifiers DCNN, DBN and LDA, respectively.Originality/valueThis paper achieves the objective detecting the human races from the faces. Particularly, MSER feature and SURF features are extracted under shape features and dense color feature are extracted as color feature. As a novelty, to make the race detection more accurate, the weight of DBN is fine tuned with a new hybrid algorithm referred as LMUDA, which is the conceptual hybridization of LA and DA, respectively.


Author(s):  
S. Arokiaraj ◽  
Dr. N. Viswanathan

With the advent of Internet of things(IoT),HA (HA) recognition has contributed the more application in health care in terms of diagnosis and Clinical process. These devices must be aware of human movements to provide better aid in the clinical applications as well as user’s daily activity.Also , In addition to machine and deep learning algorithms, HA recognition systems has significantly improved in terms of high accurate recognition. However, the most of the existing models designed needs improvisation in terms of accuracy and computational overhead. In this research paper, we proposed a BAT optimized Long Short term Memory (BAT-LSTM) for an effective recognition of human activities using real time IoT systems. The data are collected by implanting the Internet of things) devices invasively. Then, proposed BAT-LSTM is deployed to extract the temporal features which are then used for classification to HA. Nearly 10,0000 dataset were collected and used for evaluating the proposed model. For the validation of proposed framework, accuracy, precision, recall, specificity and F1-score parameters are chosen and comparison is done with the other state-of-art deep learning models. The finding shows the proposed model outperforms the other learning models and finds its suitability for the HA recognition.


2017 ◽  
Vol 21 (1) ◽  
pp. 57-70 ◽  
Author(s):  
Lorna Uden ◽  
Wu He

Purpose Current knowledge management (KM) systems cannot be used effectively for decision-making because of the lack of real-time data. This study aims to discuss how KM can benefit by embedding Internet of Things (IoT). Design/methodology/approach The paper discusses how IoT can help KM to capture data and convert data into knowledge to improve the parking service in transportation using a case study. Findings This case study related to intelligent parking service supported by IoT devices of vehicles shows that KM can play a role in turning the incoming big data collected from IoT devices into useful knowledge more quickly and effectively. Originality/value The literature review shows that there are few papers discussing how KM can benefit by embedding IoT and processing incoming big data collected from IoT devices. The case study developed in this study provides evidence to explain how IoT can help KM to capture big data and convert big data into knowledge to improve the parking service in transportation.


Author(s):  
Praveen Kumar Reddy Maddikunta ◽  
Rajasekhara Babu Madda

Energy efficiency is a major concern in Internet of Things (IoT) networks as the IoT devices are battery operated devices. One of the traditional approaches to improve the energy efficiency is through clustering. The authors propose a hybrid method of Gravitational Search Algorithm (GSA) and Artificial Bee Colony (ABC) algorithm to accomplish the efficient cluster head selection. The performance of the hybrid algorithm is evaluated using energy, delay, load, distance, and temperature of the IoT devices. Performance of the proposed method is analyzed by comparing with the conventional methods like Artificial Bee Colony (ABC), Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and GSO algorithms. The performance of the hybrid algorithm is evaluated using of number of alive nodes, convergence estimation, normalized energy, load and temperature. The proposed algorithm exhibits high energy efficiency that improves the life time of IoT nodes. Analysis of the authors' implementation reveals the superior performance of the proposed method.


Subject IoT ecosystem. Significance The market for the Internet of Things (IoT) or connected devices is expanding rapidly, with no manufacturer currently forecast to dominate the supply chain. This has fragmented the emerging IoT ecosystem, triggering questions about interoperability and cybersecurity of IoT devices. Impacts Firms in manufacturing, transportation and logistics and utilities are expected to see the highest IoT spending in coming years. The pace of IoT adoption is inextricably linked to that of related technologies such as 5G, artificial intelligence and cloud computing. Data privacy and security will be the greatest constraint to IoT adoption.


Author(s):  
Shashwat Pathak ◽  
Shreyans Pathak

The recent decade has seen considerable changes in the way the technology interacts with human lives and almost all the aspects of life be it personal or professional has been touched by technology. Many smart devices have also started playing a vital role in many fields and domains and the internet of things (IoT) has been the harbinger of the advent of IoT devices. IoT devices have proven to be monumental in imparting ‘smartness' in the otherwise static machines. The ability of the devices to interact and transfer the data to the internet and ultimately to the end-user has revolutionized the technological world and has brought many seemingly disparate fields in the technological purview. Out of the many fields where IoT has started gaining momentum, one of the most important ones is the healthcare sector. Many wearable smart devices have been developed over time capable to transmit real-time data to hospitals and doctors. It is essential for tracking the progress of the critically ill patients and has opened the horizon for attending patients remotely using these smart devices.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Meeta Sharma ◽  
Hardayal Singh Shekhawat

Purpose The purpose of this study is to provide a novel portfolio asset prediction by means of the modified deep learning and hybrid meta-heuristic concept. In the past few years, portfolio optimization has appeared as a demanding and fascinating multi-objective problem, in the area of computational finance. Yet, it is accepting the growing attention of fund management companies, researchers and individual investors. The primary issues in portfolio selection are the choice of a subset of assets and its related optimal weights of every chosen asset. The composition of every asset is chosen in a manner such that the total profit or return of the portfolio is improved thereby reducing the risk at the same time. Design/methodology/approach This paper provides a novel portfolio asset prediction using the modified deep learning concept. For implementing this framework, a set of data involving the portfolio details of different companies for certain duration is selected. The proposed model involves two main phases. One is to predict the future state or profit of every company, and the other is to select the company which is giving maximum profit in the future. In the first phase, a deep learning model called recurrent neural network (RNN) is used for predicting the future condition of the entire companies taken in the data set and thus creates the data library. Once the forecasting of the data is done, the selection of companies for the portfolio is done using a hybrid optimization algorithm by integrating Jaya algorithm (JA) and spotted hyena optimization (SHO) termed as Jaya-based spotted hyena optimization (J-SHO). This optimization model tries to get the optimal solution including which company has to be selected, and optimized RNN helps to predict the future return while using those companies. The main objective model of the J-SHO-based RNN is to maximize the prediction accuracy and J-SHO-based portfolio asset selection is to maximize the profit. Extensive experiments on the benchmark datasets from real-world stock markets with diverse assets in various time periods shows that the developed model outperforms other state-of-the-art strategies proving its efficiency in portfolio optimization. Findings From the analysis, the profit analysis of proposed J-SHO for predicting after 7 days in next month was 46.15% better than particle swarm optimization (PSO), 18.75% better than grey wolf optimization (GWO), 35.71% better than whale optimization algorithm (WOA), 5.56% superior to JA and 35.71% superior to SHO. Therefore, it can be certified that the proposed J-SHO was effective in providing intelligent portfolio asset selection and prediction when compared with the conventional methods. Originality/value This paper presents a technique for providing a novel portfolio asset prediction using J-SHO algorithm. This is the first work uses J-SHO-based optimization for providing a novel portfolio asset prediction using the modified deep learning concept.


Sign in / Sign up

Export Citation Format

Share Document