Base, Substrate Materials for the Construction of Electronic Assemblies; Special Application of Surface Mount Technology Printed Circuit Boards

Circuit World ◽  
1986 ◽  
Vol 12 (4) ◽  
pp. 44-47 ◽  
Author(s):  
A. Angstenberger
2011 ◽  
Vol 341-342 ◽  
pp. 411-415
Author(s):  
Ping Liu ◽  
Xiao Long Gu ◽  
Xin Bing Zhao ◽  
Xiao Gang Liu

The complexity of Printed Circuit Boards (PCBs) has increased dramatically over the last three decades with the development of surface mount technology (SMT). The typical manufacture of rigid multilayer PCB contains many process procedures, which makes manufacture and application much more challenges. This paper focuses on some typical PCB related failures. Recommendations are provided on optimizing PCB manufacture process and material application. Microvia crack, black pad, galvanic attack, pad design, conductive anodic filament and pad crater are presented in detail.


1994 ◽  
Vol 116 (4) ◽  
pp. 282-289 ◽  
Author(s):  
Yu-Wen Huang ◽  
K. Srihari ◽  
Jim Adriance ◽  
George Westby

The placement of surface mount components is a time consuming and critical task in the assembly of surface mount Printed Circuit Boards (PCBs). The focus of this research was the identification of “near optimal” solutions for the placement sequence identification problem. The factors considered include the placement machine and the specific PCB, the feeder space available, the need for tooling and nozzle changes, and the actual traveling path of the placement head. Expert (or knowledge based) systems were used as the solution method for this problem. The system developed can cope with single PCBs, panels, 180 deg offset boards (panels), and multiple PCB batches. The prototype knowledge based system developed in this research identifies solutions in (almost) realtime.


Author(s):  
A. De Luca Pennacchia ◽  
L. G. De la Fraga ◽  
U. Martí­nez Hernández

The progressive implementation of software functions in Integrated Circuits (ICs) has considerably increased the number of transistors and pin connections of ICs. For that reason, Printed Circuit Boards (PCBs) are fabricated with the Surface Mount Technology (SMT) nowadays and IC mounting on PCB is a crucial process that requires high precision. An Automatic Mechanical Montage (AMM) system is used to mount ICs on the sockets using a couple of reference points for every IC in order to find the correct positions for mounting the IC. Due to some factors in the process of PCB development, there are differences between designed and manufactured PCBs, which could generate delays in their production. In this work, a software tool which allows to work with digital images of PCBs is described. This tool finds the differences generated in PCB development, especially the differences in IC reference points using Digital Image Processing (DIP) techniques.


Circuit World ◽  
1988 ◽  
Vol 14 (2) ◽  
pp. 11-15 ◽  
Author(s):  
M.M.F. Verguld ◽  
M.H.W. Leenaerts

Sign in / Sign up

Export Citation Format

Share Document