Parametric finite element modeling and tooth contact analysis of spur and helical gears including profile and lead modifications

2017 ◽  
Vol 34 (8) ◽  
pp. 2877-2898 ◽  
Author(s):  
Yanzhong Wang ◽  
Yang Liu ◽  
Wen Tang ◽  
Peng Liu

Purpose The finite element method has been increasingly applied in stress, thermal and dynamic analysis of gear transmissions. Preparing the models with different design and modification parameters for the finite element analysis is a time-consuming and highly skilled burden. Design/methodology/approach To simplify the preprocessing work of the analysis, a parametric finite element modeling method for spur and helical gears including profile and lead modification is developed. The information about the nodes and elements is obtained and exported into the finite element software to generate the finite element model of the gear automatically. Findings By using the three-dimensional finite element tooth contact analysis method, the effects of tooth modifications on the transmission error and contact stress of spur and helical gears are presented. Originality/value The results demonstrate that the proposed method is useful for verifying the modification parameters of spur and helical gears in the case of deformations and misalignments.

2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Yanping Liu ◽  
Yongqiang Zhao ◽  
Ming Liu ◽  
Xiaoyu Sun

In order to perform a tooth contact analysis of helical gears with satisfactory accuracy and computational time consuming, a parameterized approach to establish a high-precision three-dimension (3D) finite element model (FEM) of involute helical gears is proposed. The enveloping theory and dentiform normal method are applied to deduce the mathematical representations of the root transit curve as well as the tooth profile of the external gear in the transverse plane based on the manufacturing process. A bottom-up modelling method is applied to build the FEM of the helical gear directly without the intervention of CAD software or creating the geometry model in advance. Local refinement methodology of the hexahedral element has been developed to improve the mesh quality and accuracy. A computer program is developed to establish 3D helical gear FEM with contact region well refined with any parameters and mesh density automatically. The comparison of tooth contact analysis between the coarse-mesh model and local refinement model demonstrates that the present method can efficiently improve the simulation accuracy while greatly reduce the computing cost. Using the proposed model, the tooth load sharing ratio, static transmission error, meshing stiffness, root bending stress, and contact stress of the helical gear are obtained based on the quasistatic load tooth contact analysis. This methodology can also be used to create other types of involute gears, such as high contact ratio gear, involute helical gears with crossed axes, or spiral bevel gears.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Zhao Xu ◽  
Zezhi Rao ◽  
Vincent J. L. Gan ◽  
Youliang Ding ◽  
Chunfeng Wan ◽  
...  

Mesh generation plays an important role in determining the result quality of finite element modeling and structural analysis. Building information modeling provides the geometry and semantic information of a building, which can be utilized to support an efficient mesh generation. In this paper, a method based on BRep entity transformation is proposed to realize the finite element analysis using the geometric model in the IFC standard. The h-p version of the finite element analysis method can effectively deal with the refined expression of the model of bending complex components. By meshing the connection model, it is suggested to adopt the method of scanning to generate hexahedron, which improves the geometric adaptability of the mesh model and the quality and efficiency of mesh generation. Based on the extension and expression of IFC information, the effective finite element structure information is extracted and extended into the IFC standard mode. The information is analyzed, and finally the visualization of finite element analysis in the building model can be realized.


Author(s):  
Santosh Shanbhag ◽  
Ian R. Grosse ◽  
Jack C. Wileden ◽  
Alan Kaplan

Abstract With the integration of CAD and FEA software packages, design engineers who are not skilled in finite element analysis are performing finite element modeling and analysis. Furthermore, in the analysis of a system, engineers often make numerous modeling simplifications and analysis assumptions depending on the trade-off between cost, accuracy, precision or other engineering analysis objectives. Thus, reusability or interoperability of engineering analysis models is difficult and often impractical due to the wealth of knowledge involved in the creation of such models and the lack of formal methods to codify and explicitly represent this critical modeling knowledge. Most institutions and organizations have started documenting these simplifications and assumptions, making them understandable for the other engineers within the organization. However, this does not allow a seamless exchange of data or interoperability with other analysis models of similar or dissimilar nature. This plays a very important role in today’s market, which is moving away from the traditional make-to-stock production model to a build-to-demand model. We address these issues in this paper by adopting and extending the computer science concept of meta-object, and applying it in novel ways to the domain of FEA and the representation of finite element modeling knowledge. We present a taxonomy for engineering models that aids in the definition of the various object analysis classes. A simple beam analysis example, followed by a more realistic injection-molded part example. The latter example involves injection-mold filling simulation, thermal cooling, and part ejection analyses which are subclasses for a generic manufacturing analysis meta-object class. Prototype implementations of automated support for this meta-object approach to finite element modeling is in progress.


2019 ◽  
Vol 799 ◽  
pp. 211-216
Author(s):  
Alina Sivitski ◽  
Priit Põdra

Contact modeling could be widely used for different machine elements normal contact pressure calculations and wear simulations. However, classical contact models as for example Hertz contact models have many assumptions (contact bodies are elastic, the contact between bodies is ellipse-shaped, contact is frictionless and non-conforming). In conditions, when analytical calculations cannot be performed and experimental research is economically inexpedient, numerical methods have been applied for solving such engineering tasks. Contact stiffness parameters appear to be one of the most influential factors during finite element modeling of contact. Contact stiffness factors are usually selected according to finite element analysis software recommendations. More precise analysis of contact stiffness parameters is often required for finite element modeling of contact.


Author(s):  
Y-C Chen ◽  
M-L Gu

This article investigated the contact behaviours of a modified curvilinear gear set for parallel-axis transmission, which exhibits a pre-designed parabolic transmission error (TE) and localized bearing contact. The proposed gear set is composed of a modified pinion with curvilinear teeth and an involute gear with curvilinear teeth. Tooth contact analysis enabled the authors to explore the influences of assembly errors and design parameters on TEs and contact ellipses of this gear set. It is observed that TEs were continuous and the contact ellipses were localized in the middle of the tooth flanks, even under assembly errors. Finite-element contact analysis was performed to study stress distributions under different design parameters. In addition, numerical examples are presented to demonstrate the contact characteristics of the modified curvilinear gear set.


Author(s):  
G. B. Sinclair ◽  
N. G. Comier ◽  
J. H. Griffin ◽  
G. Meda

The stress analysis of dovetail attachments presents some challenges. These challenges stem from the high stress gradients near the edges of contact and from the nonlinearities attending conforming contact with friction. To meet these challenges with a finite element analysis, refined grids are needed with mesh sizes near the edges of contact of the order of one percent of the local radii of curvature there. A submodeling procedure is described which can provide grids of sufficient resolution in return for moderate computational effort. This procedure furnishes peak stresses near contact edges which are converging on a sequence of three submodel grids, and which typically do converge to within about five percent.


2010 ◽  
Vol 44-47 ◽  
pp. 3711-3715
Author(s):  
Rui Liang Zhang ◽  
Tie Wang ◽  
Hong Mei Li

Tooth contact analysis is an effective tool for meshing analysis of the double circular arc profile spiral bevel gear (DCAPSBG), as well as the basis for loading tooth contact analysis and finite element analysis. Applying the principle of tooth contact analysis (TCA) and the tooth profile characteristic of the DCAPSBG, this paper introduced and discussed the key contents and method of TCA computer programming for numerical simulation analysis of the transmission meshing quality of DCAPSBG. The TCA program developed in this paper, which had been verified by real examples, provided an effective approach for the design of DCAPSBG.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sajad Hasheminasab ◽  
Ehsan Kashi

Purpose In many coastal areas where there are problematic soils, pavement construction on the soil is difficult because of the low shear strength and high consolidated. Also, given that the container terminals constitute more than 70% of the port area and as pavement in these areas is subject to heavy loads due to the long-term container storage, wheels of transport and movement equipment, the pavement must tolerate a distributed loading of at least 4 ton/m2 in accordance with the type and weight of the containers imposed on the pavement. This study aims to investigate a variety of common pavement designs in coastal areas of southern Iran. The pavement type and characteristics of the subgrade layers are the same for each port; the thickness of different pavement layers is designed. Design/methodology/approach Due to problematic soil in the pavement subgrade, heavy and long-term container loading and the associated equipment, port pavement enjoys great importance. Findings The designed pavements are modeled by ABAQUS finite element software. The pavements are subject to a static load imposed by the corner casting container and resulted a distributed load 4 tons/m2. The results from data analysis show that the concrete block pavements influenced by the containers static loads of 3%–20% have less vertical displacement on the subgrade than other pavements (rigid and flexible). Originality/value This paper is modeling 3 port pavement in Iran. Based on field evaluation and simulation actual loading on pavement.


Sign in / Sign up

Export Citation Format

Share Document