Numerical investigation of laminar forced convection for a non-Newtonian nanofluids flowing inside an elliptical duct under convective boundary condition

Author(s):  
Haroun Ragueb ◽  
Kacem Mansouri

PurposeThe purpose of this study is to investigate the thermal response of the laminar non-Newtonian fluid flow in elliptical duct subjected to a third-kind boundary condition with a particular interest to a non-Newtonian nanofluid case. The effects of Biot number, aspect ratio and fluid flow behavior index on the heat transfer have been examined carefully.Design/methodology/approachFirst, the mathematical problem has been formulated in dimensionless form, and then the curvilinear elliptical coordinates transform is applied to transform the original elliptical shape of the duct to an equivalent rectangular numerical domain. This transformation has been adopted to overcome the inherent mathematical deficiency due to the dependence of the ellipsis contour on the variables x and y. The yielded problem has been successfully solved using the dynamic alternating direction implicit method. With the available temperature field, several parameters have been computed for the analysis purpose such as bulk temperature, Nusselt number and heat transfer coefficient.FindingsThe results showed that the use of elliptical duct enhances significantly the heat transfer coefficient and reduces the duct’s length needed to achieve the thermal equilibrium. For some cases, the reduction in the duct’s length can reach almost 50 per cent compared to the circular pipe. In addition, the analysis of the non-Newtonian nanofluid case showed that the addition of nanoparticles to the base fluid improves the heat transfer coefficient up to 25 per cent. The combination of using an elliptical duct and the addition of nanoparticles has a spectacular effect on the overall heat transfer coefficient with an enhancement of 50-70 per cent. From the engineering applications view, the results demonstrate the potential of elliptical duct in building light-weighted compact shell-and-tube heat exchangers.Originality/valueA complete investigation of the heat transfer of a fully developed laminar flow of power law fluids in elliptical ducts subject to the convective boundary condition with application to non-Newtonian nanofluids is addressed.

Author(s):  
Magdalena Jaremkiewicz

Purpose The purpose of this paper is to propose a method of determining the transient temperature of the inner surface of thick-walled elements. The method can be used to determine thermal stresses in pressure elements. Design/methodology/approach An inverse marching method is proposed to determine the transient temperature of the thick-walled element inner surface with high accuracy. Findings Initially, the inverse method was validated computationally. The comparison between the temperatures obtained from the solution for the direct heat conduction problem and the results obtained by means of the proposed inverse method is very satisfactory. Subsequently, the presented method was validated using experimental data. The results obtained from the inverse calculations also gave good results. Originality/value The advantage of the method is the possibility of determining the heat transfer coefficient at a point on the exposed surface based on the local temperature distribution measured on the insulated outer surface. The heat transfer coefficient determined experimentally can be used to calculate thermal stresses in elements with a complex shape. The proposed method can be used in online computer systems to monitor temperature and thermal stresses in thick-walled pressure components because the computing time is very short.


1969 ◽  
Vol 91 (1) ◽  
pp. 27-36 ◽  
Author(s):  
B. S. Shiralkar ◽  
Peter Griffith

At slightly supercritical pressure and in the neighborhood of the pseudocritical temperature (which corresponds to the peak in the specific heat at the operating pressure), the heat transfer coefficient between fluid and tube wall is strongly dependent on the heat flux. For large heat fluxes, a marked deterioration takes place in the heat transfer coefficient in the region where the bulk temperature is below the pseudocritical temperature and the wall temperature above the pseudocritical temperature. Equations have been developed to predict the deterioration in heat transfer at high heat fluxes and the results compared with previously available results for steam. Experiments have been performed with carbon dioxide for additional comparison. Limits of safe operation for a supercritical pressure heat exchanger in terms of the allowable heat flux for a particular flow rate have been determined theoretically and experimentally.


2015 ◽  
Vol 137 (11) ◽  
Author(s):  
M. Razavi ◽  
Y. S. Muzychka ◽  
S. Kocabiyik

In this paper, thermal resistance of a 2D flux channel with nonuniform convection coefficient in the heat sink plane is studied using the method of separation of variables and the least squares technique. For this purpose, a two-dimensional flux channel with discretely specified heat flux is assumed. The heat transfer coefficient at the sink boundary is defined symmetrically using a hyperellipse function which can model a wide variety of different distributions of heat transfer coefficient from uniform cooling to the most intense cooling in the central region. The boundary condition along the edges is defined with convective cooling. As a special case, the heat transfer coefficient along the edges can be made negligible to simulate a flux channel with adiabatic edges. To obtain the temperature profile and the thermal resistance, the Laplace equation is solved by the method of separation of variables considering the applied boundary conditions. The temperature along the flux channel is presented in the form of a series solution. Due to the complexity of the sink plane boundary condition, there is a need to calculate the Fourier coefficients using the least squares method. Finally, the dimensionless thermal resistance for a number of different systems is presented. Results are validated using the data obtained from the finite element method (FEM). It is shown that the thick flux channels with variable heat transfer coefficient can be simplified to a flux channel with the same uniform heat transfer coefficient.


2013 ◽  
Vol 58 (1) ◽  
pp. 105-112 ◽  
Author(s):  
B. Hadała ◽  
Z. Malinowski ◽  
T. Telejko ◽  
A. Szajding

The industrial hot rolling mills are equipped with systems for controlled cooling of hot steel products. In the case of strip rolling mills the main cooling system is situated at run-out table to ensure the required strip temperature before coiling. One of the most important system is laminar jets cooling. In this system water is falling down on the upper strip surface. The proper cooling rate affects the final mechanical properties of steel which strongly dependent on microstructure evolution processes. Numerical simulations can be used to determine the water flux which should be applied in order to control strip temperature. The heat transfer boundary condition in case of laminar jets cooling is defined by the heat transfer coefficient, cooling water temperature and strip surface temperature. Due to the complex nature of the cooling process the existing heat transfer models are not accurate enough. The heat transfer coefficient cannot be measured directly and the boundary inverse heat conduction problem should be formulated in order to determine the heat transfer coefficient as a function of cooling parameters and strip surface temperature. In inverse algorithm various heat conduction models and boundary condition models can be implemented. In the present study two three dimensional finite element models based on linear and non-linear shape functions have been tested in the inverse algorithm. Further, two heat transfer boundary condition models have been employed in order to determine the heat transfer coefficient distribution at the hot plate cooled by laminar jets. In the first model heat transfer coefficient distribution over the cooled surface has been approximated by the witch of Agnesi type function with the expansion in time of the approximation parameters. In the second model heat transfer coefficient distribution over the cooled plate surface has been approximated by the surface elements serendipity family with parabolic shape functions. The heat transfer coefficient values at surface element nodes have been expanded in time by the cubic-spline functions. The numerical tests have shown that in the case of heat conduction model based on linear shape functions inverse solution differs significantly from the searched boundary condition. The dedicated finite element heat conduction model based on non-linear shape functions has been developed to ensure inverse determination of heat transfer coefficient distribution over the cooled surface in the time of cooling. The heat transfer coefficient model based on surface elements serendipity family is not limited to a particular form of the heat flux distribution. The solution has been achieved for measured temperatures of the steel plate cooled by 9 laminar jets.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Maryiam Javed

Purposeobjective of the present investigation is to examine the influence of Hall on the peristaltic mechanism of Johnson-Segalman fluid in a heated channel with elastic walls. The transmission of heat is carried out. Relevant equations are computed for heat transfer coefficient, temperature and velocity. Low Reynolds number assumptions and long wavelength are employed. The interpretation of various parameters is analyzed. The results indicate that the heat transfer coefficient, temperature and velocity are larger for viscous material in comparison with Johnson-Segalman material.Design/methodology/approachThe transmission of heat is carried out. Relevant equations are computed for heat transfer coefficient, temperature and velocity. Low Reynolds number assumptions and long wavelength are employed. The interpretation of various parameters is analyzed. The results indicate that the heat transfer coefficient, temperature and velocity are larger for viscous material in comparison with Johnson-Segalman material.FindingsThe formulation of paper is executed as follows. Section 2 comprises problem summary and mathematical design. Solution methodology is discussed, and expressions for temperature, velocity and coefficient of heat transfer are derived in Section 3. Graphical outcomes for the parameters are reported in Section 4. Conclusions are outlined in Section 5.Practical implicationsPeristaltic phenomenon of fluids has a definite role in many physiological, industrial and engineering processes. The mechanical devices for instance finger and roller pumps operate via this process, and it is quite significant for vasomotion of blood vessels, consumption of food via esophagus, chyme flow in gastrointestinal zone, toxic liquid flow in nuclear industry and transport of corrosive fluids.Originality/valueLiterature review witnesses that information about peristalsis of conducting fluid in a heated channel with flexible walls and Hall effect is scarce. So, our goal is to discuss the peristaltic activity of non-Newtonian fluids in flexible channel. Johnson-Segalman fluid is taken into account. This model is used to allow non-affine deformations. Experimentalists relate “spurt” with wall slip. That is why the work presented is original.


Author(s):  
Yong Tang ◽  
Ting Fu ◽  
Yijin Mao ◽  
Yuwen Zhang ◽  
Wei Yuan

Molecular dynamics (MD) simulation aiming to investigate heat transfer between argon fluid flow and two parallel copper plates in the nanoscale is carried out by simultaneously control momentum and temperature of the simulation box. The top copper wall is kept at a constant velocity by adding an external force according to the velocity difference between on-the-fly and desired velocities. At the same time the top wall holds a higher temperature while the bottom wall is considered as physically stationary and has a lower temperature. A sample region is used in order to measure the heat flux flowing across the simulation box, and thus the heat transfer coefficient between the fluid and wall can be estimated through its definition. It is found that the heat transfer coefficient between argon fluid flow and copper plate in this scenario is lower but still in the same order magnitude in comparison with the one predicted based on the hypothesis in other reported work.


Author(s):  
T. I-P. Shih ◽  
C.-S. Lee ◽  
K. M. Bryden

The heat-transfer coefficient (HTC) in internal-coolant passages can vary appreciably about a heat-transfer enhancement feature such as a pin fin, a rib, and a concavity because of stagnation regions and wakes about the enhancement feature. However, the computed or measured HTC is often averaged spatially in the spanwise direction or over some region when used in the design of cooling strategies. Since the variation in the HTC could be a factor of eight or more about an enhancement feature, it is of interest to understand the effects of averaging the HTC on the predicted temperature distribution in the solid subjected to the heating and cooling. In this computational study, a flat plate of thickness H (1 mm) and length L = 20H is heated on one side by either a constant heat flux (68 W/cm2) or a constant HTC (1,167.2 W/m2-K) and a constant hot-gas temperature (1,482 °C). On the cooled side, the free stream or bulk temperature is kept constant (400 °C) and the average HTC (1,442.5 W/m2-K) is kept constant as well. This average HTC on the cooled side is the average of a higher HTC (hH) and a lower HTC (hL). Two types of changes from hH to hL are considered — abrupt (or step) and gradual. When the HTC changes abruptly, hH is imposed over LH, and hL is imposed over LL=L–LH. When the HTC changes gradually from hH to hL, hH is imposed from from x = 0 to LH/2, and hL is imposed from x = 3LH/2 to L with a smooth variation in the HTC to connect hH and hL. Results obtained show that when the averaged HTC is used, the maximum temperature in the plate is 900 °C on the heated side of the plate. However, if the variation in the HTC is accounted for, then the maximum temperature in the plate could be as high as 1.363 times the maximum temperature predicted by assuming an averaged HTC. Also, for the range of parameters studied, the difference in the maximum and minimum temperature in the plate can increase by a factor of 16, which strongly affects thermal stress.


Author(s):  
Florentina Simionescu ◽  
Daniel K. Harris

Cooling of electronic devices requires the use of heat spreaders whose function is to allow the spreading of the heat flux lines in the 3-D space and to increase the exchange area with the coolant. The objective of this analysis is to estimate the convective heat transfer coefficient of a microchannel heat sink that corresponds to a maximum amount of heat removed from heat source placed on the top surface of the sink. This problem is solved using an optimal control technique in which we control the solution of the heat equation with the convective boundary condition, taking the heat transfer coefficient as the control. A conjugate gradient method is used to solve the optimal control problem. The results show that the temperature distributions corresponding to the controlled solution are lower than those corresponding to the uncontrolled solution. This study can provide guidance in designing micro heat pipe sinks, which have emerged as an effective technique for cooling electronic components.


Sign in / Sign up

Export Citation Format

Share Document