Heat and mass transfer in a porous medium filled rectangular duct with Soret and Dufour effects under inclined magnetic field

2014 ◽  
Vol 24 (7) ◽  
pp. 1405-1436 ◽  
Author(s):  
Ali J. Chamkha ◽  
B. Mallikarjuna ◽  
R. Bhuvana Vijaya ◽  
D.R.V. Prasada Rao

Purpose – The purpose of this paper is to study the effects of Soret and Dufour effects on convective heat and mass transfer flow through a porous medium in a rectangular duct in the presence of inclined magnetic field. Design/methodology/approach – Using the non-dimensional variables, the governing equations have been transformed into a set of differential equations, which are non-linear and cannot be solved analytically, therefore finite element method has been used for solving the governing equations. Findings – The influence of thermo-diffusion, diffusion thermo, radiation, dissipation, heat sources and the inclined magnetic field on all the flow, heat and mass transfer characteristics has been found to be significant. Originality/value – The problem is relatively original as it combines many effects as Soret and Dufour effects and chemical reaction under inclined magnetic field.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
D. Srinivasacharya ◽  
O. Surender

This paper presents the nonsimilarity solutions for mixed convection heat and mass transfer along a semi-infinite vertical plate embedded in a doubly stratified fluid saturated porous medium in the presence of Soret and Dufour effects. The flow in the porous medium is described by employing the Darcy-Forchheimer based model. The nonlinear governing equations and their associated boundary conditions are initially cast into dimensionless forms and then solved numerically. The influence of pertinent parameters on dimensionless velocity, temperature, concentration, heat, and mass transfer in terms of the local Nusselt and Sherwood numbers is discussed and presented graphically.


2016 ◽  
Vol 26 (8) ◽  
pp. 2310-2330 ◽  
Author(s):  
M.M. Rahman ◽  
Hakan F. Öztop ◽  
R. Saidur ◽  
A.G. Naim ◽  
Khaled S. Al-Salem ◽  
...  

Purpose The purpose of this paper is to make a numerical analysis on unsteady analysis of natural convection heat and mass transfer to obtain flow field, temperature distribution, and concentration distribution. Design/methodology/approach A finite element method is applied to solve governing equations of natural convection in curvilinear-shaped system for different parameters as thermal Rayleigh numbers (103=RaT=106), inclination angle (0°=φ=60°) and Hartmann numbers (0=Ha=100). Findings Both magnetic field and inclination angle can be used as control parameter on heat and mass transfer. Flow strength decreases almost 100 percent between Ha=0 and Ha=100 on behalf of the higher values of thermal Rayleigh number. Originality/value The originality of this work is to application of magnetic field on time-dependent natural convection flow, heat and mass transfer for curvilinear geometry.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gladys Tharapatla ◽  
Pamula Rajakumari ◽  
Ramana G.V. Reddy

Purpose This paper aims to analyze heat and mass transfer of magnetohydrodynamic (MHD) non-Newtonian fluids flow past an inclined thermally stratified porous plate using a numerical approach. Design/methodology/approach The flow equations are set up with the non-linear free convective term, thermal radiation, nanofluids and Soret–Dufour effects. Thus, the non-linear partial differential equations of the flow analysis were simplified by using similarity transformation to obtain non-linear coupled equations. The set of simplified equations are solved by using the spectral homotopy analysis method (SHAM) and the spectral relaxation method (SRM). SHAM uses the approach of Chebyshev pseudospectral alongside the homotopy analysis. The SRM uses the concept of Gauss-Seidel techniques to the linear system of equations. Findings Findings revealed that a large value of the non-linear convective parameters for both temperature and concentration increases the velocity profile. A large value of the Williamson term is detected to elevate the velocity plot, whereas the Casson parameter degenerates the velocity profile. The thermal radiation was found to elevate both velocity and temperature as its value increases. The imposed magnetic field was found to slow down the fluid velocity by originating the Lorentz force. Originality/value The novelty of this paper is to explore the heat and mass transfer effects on MHD non-Newtonian fluids flow through an inclined thermally-stratified porous medium. The model is formulated in an inclined plate and embedded in a thermally-stratified porous medium which to the best of the knowledge has not been explored before in literature. Two elegance spectral numerical techniques have been used in solving the modeled equations. Both SRM and SHAM were found to be accurate.


2017 ◽  
Vol 14 (1) ◽  
pp. 7-18 ◽  
Author(s):  
Ajaz Ahmad Dar ◽  
K. Elangovan

Purpose This paper aims to intend for investigating the influence of an inclined magnetic field on the peristaltic flow of a couple stress fluid through an inclined channel with heat and mass transfer. Design/methodology/approach Long wavelength and low Reynolds number methodology is actualized for simplifying the highly nonlinear equations. Mathematical expressions of axial velocity, pressure gradient and volume flow rate are obtained. Pressure rise, frictional force and pumping phenomenon are portrayed and symbolized graphically. Exact and numerical solutions have been carried out. The computed results are presented graphically for various embedded parameters. Temperature and concentration profile are also scrutinized and sketched. Findings Results from the current study concluded that the fluid motion can be enhanced by increasing the inclination of both the magnetic field and the channel. Originality/value The elemental characteristics of this analysis is a complete interpretation of the influence of couple stress parameter and inclination of magnetic field on the velocity, pressure gradient, pressure rise and frictional forces.


Sign in / Sign up

Export Citation Format

Share Document