scholarly journals A new model of fuel spray shape at early stage of injection in a marine diesel engine

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Joanna Grochowalska ◽  
Piotr Jaworski ◽  
Łukasz Jan Kapusta ◽  
Jerzy Kowalski

Purpose In the cylinders of a marine diesel engine, self-ignition occurs in a very short time after the fuel injection into the combustion chamber. Therefore, this paper aims to develop a model of diesel fuel spray for the early stage of fuel spray in the marine diesel engine. The main technical aspects such as nozzle diameter of the marine engine injector and backpressure in the combustion chamber were taken into consideration. Design/methodology/approach In this paper, laboratory experimental studies were carried out to determine parameters of fuel spray in an early stage of injection in the marine diesel engine. The optical measuring Mie scattering technique was used to record the fuel injection process. The working space was a constant volume chamber. The backpressure parameters in the constant volume chamber were the same as during the operation of the marine diesel engine. Based on the experimental studies and important Hiroyasu and Arai models of fuel spray presented in literature was proposed new model of fuel spray parameters for marine diesel injectors. Findings In this paper, the proposed new model of the two main parameters described fuel spray evolution”: new model of spray tip penetration (STP) and spray cone angle (SCA). New model propagation of fuel STP in time was included the influence of nozzle diameter and backpressure. The proposed model has a lower error, about 15%–34%, than the model of Hiroyasu and Arai. Moreover, a new model of the evolution over time of the SCA is developed. Research limitations/implications In the future research of fuel spray process must be taken influence of the fuel temperature. Diesel fuel has a different density and viscosity in dependence of fuel temperature. Therefore are predicted of the expansion about influence of fuel temperature, new model of fuel spray for a marine diesel engine. The main limitations occurring in the research are not possible to carry out the research while real operation marine diesel engine. Originality/value An experimental test was carried out for a real fuel injector of a marine diesel engine. Design parameters and fuel injection parameters were selected on the basis of the actual one. In the literature, SCA is defined as a constant parameter for the specific preliminary data. A new model for the early stage of fuel spray of SCA propagation in time has been proposed. The early stage of fuel spray is especially important, because in this time comes in there to fuel self-ignition.

2016 ◽  
Vol 167 (4) ◽  
pp. 53-57
Author(s):  
Joanna LEWIŃSKA

The article presents results of a laboratory study on exhaust gas emission level from a marine diesel engine. The object of the laboratory study was a four-stroke marine diesel engine type Al 25/30 Sulzer, operated at a constant speed. The examination on the engine was carried out according to regulations of the Annex VI to MARPOL 73/78 Convention. The laboratory study consisted of 3 observations: the engine assumed to be operating without malfunctions, delay of the fuel injection by 5° of crankshaft angle in the second engine cylinder, and the leakage of the fuel pump on the second engine cylinder. Additionally, parameters of fuel consumption and thermodynamic parameters of the marine engine were measured during the research. Simulated malfunctions caused changes in total weighed NOx, CO, and CO2 emissions for all considered engine loads. All simulated malfunctions caused a small change in measured thermodynamic parameters of the engine. The engine operation with the delayed fuel injection and the fuel leakage in the fuel pump in one cylinder caused a decrease of NOx and CO emission level. Fuel leakage in the fuel pump causes the CO2 emission to decrease only at low engine load. Calculations of the weighed specific fuel consumption present a 1-2% change in the engine efficiency.


2002 ◽  
Vol 8 (5) ◽  
pp. 659-671 ◽  
Author(s):  
Mosaad Mosleh ◽  
Amier Al-Ali

A linear time invariant (LTI) model of a marine diesel engine is presented. The effect of the discontinuity of the fuel injection into the cylinders and the injection period is considered. The proposed discrete model consists of a sampler and zero-order-hold mechanism, representing the fuel injection process. The design of the discrete controller is based on the pole assignment of the characteristic polynomial of the closed-loop transfer function with the goal of achieving zero steady-state error, and satisfying other design specifications. A numerical example illustrating the characteristic performance of a two stroke marine diesel engine is presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yuanqing Wang ◽  
Guichen Zhang ◽  
Zhubing Shi ◽  
Qi Wang ◽  
Juan Su ◽  
...  

In this paper, in order to handle the nonlinear system and the sophisticated disturbance in the marine engine, a finite-time convergence control method is proposed for the diesel engine rotating speed control. First, the mean value model is established for the diesel engine, which can represent response of engine fuel injection to engine speed. Then, in order to deal with parameter perturbation and load disturbance of the marine diesel engine, a finite-time convergence active disturbance rejection control (ADRC) is proposed. At the last, simulation experiments are conducted to verify the effectiveness of the proposed controller under the different load disturbances for the 7RT-Flex60C marine diesel engine. The simulation results demonstrate that the proposed control scheme has better control effect and stronger anti-interference ability than the linear ADRC.


Author(s):  
Mayuko Nakamura ◽  
Atsuto Ohashi ◽  
Yoichi Niki ◽  
Akiko Masuda ◽  
Chiori Takahashi

Reduction of particulate matter (PM) is important issues even for shipping industry since PM harms the environment and human health. In order to reduce PM from marine diesel engines, we focused on components forming PM, elemental carbon (EC), organic carbon (OC), sulfate, and “others” (nitrate, bound water associated with sulfate, metal, ash and hydrogen associated with OC), and investigated the reduction effect of each component by changing fuel injection pressure of a four-stroke marine diesel engine at the two engine load points of 25% and 50%. At 50% load, the PM emissions decreased with increasing the fuel injection pressure, the reduction in the PM emissions which reflected the decrease in EC. At 25% load, the PM emissions did not decrease simply with the injection pressure since OC, sulfate, “others” components in addition to EC contributed to the injection pressure dependence of PM. The results suggest that behaviors of each component of PM should be grasped to achieve the appropriate reduction method of PM.


2013 ◽  
Vol 291-294 ◽  
pp. 1920-1924
Author(s):  
Min Xiao ◽  
Hui Chen

The KIVA-3V program was used to make numerical simulation for L21/31 type of medium-speed marine diesel engine about the NOx emissions and the affection of NOx changing process on different variable parameters under the Tier Ⅱstandard. On this basis, a discussion towards the NOx emission of the model fueling with dimethyl ether (DME) to meet the Tier Ⅲ standard is offered. The results show that reducing the intake temperature, load and speed, postponing the fuel injection timing and intake lag angle properly can decrease the NOx emissions within the limits of NOx in TierⅡ standard. Comparing the results of the numerical simulation of DME and diesel fuel, the NOx emission of the former one is 60.85% of the latter one, and the NOx emission of changing variable parameters on DME engine is 35.56% of the original type of diesel engine, very close to the Tier Ⅲ.


Sign in / Sign up

Export Citation Format

Share Document