Numerical analysis of compact plate-fin heat exchangers for aerospace applications

Author(s):  
Ranganayakulu Chennu

Purpose The purpose of this study is to find the thermo-hydraulic performances of compact heat exchangers (CHE’s), which are strongly depending upon the prediction of performance of various types of heat transfer surfaces such as offset strip fins, wavy fins, rectangular fins, triangular fins, triangular and rectangular perforated fins in terms of Colburn “j” and Fanning friction “f” factors. Design/methodology/approach Numerical methods play a major role for analysis of compact plate-fin heat exchangers, which are cost-effective and fast. This paper presents the on-going research and work carried out earlier for single-phase steady-state heat transfer and pressure drop analysis on CHE passages and fins. An analysis of a cross-flow plate-fin compact heat exchanger, accounting for the individual effects of two-dimensional longitudinal heat conduction through the exchanger wall, inlet fluid flow maldistribution and inlet temperature non-uniformity are carried out using a Finite Element Method (FEM). Findings The performance deterioration of high-efficiency cross-flow plate-fin compact heat exchangers have been reviewed with the combined effects of wall longitudinal heat conduction and inlet fluid flow/temperature non-uniformity using a dedicated FEM analysis. It is found that the performance deterioration is quite significant in some typical applications due to the effects of wall longitudinal heat conduction and inlet fluid flow non-uniformity on cross-flow plate-fin heat exchangers. A Computational Fluid Dynamics (CFD) program FLUENT has been used to predict the design data in terms of “j” and “f” factors for plate-fin heat exchanger fins. The suitable design data are generated using CFD analysis covering the laminar, transition and turbulent flow regimes for various types of fins. Originality/value The correlations for the friction factor “f” and Colburn factor “j” have been found to be good. The correlations can be used by the heat exchanger designers and can reduce the number of tests and modification of the prototype to a minimum for similar applications and types of fins.

2019 ◽  
Vol 29 (11) ◽  
pp. 4334-4348
Author(s):  
Minqiang Pan ◽  
Hongqing Wang ◽  
Yujian Zhong ◽  
Tianyu Fang ◽  
Xineng Zhong

Purpose With the increasing heat dissipation of electronic devices, the cooling demand of electronic products is increasing gradually. A water-cooled microchannel heat exchanger is an effective cooling technology for electronic equipment. The structure of a microchannel has great impact on the heat transfer performance of a microchannel heat exchanger. The purpose of this paper is to analyze and compare the fluid flow and heat transfer characteristic of a microchannel heat exchanger with different reentrant cavities. Design/methodology/approach The three-dimensional steady, laminar developing flow and conjugate heat transfer governing equations of a plate microchannel heat exchanger are solved using the finite volume method. Findings At the flow rate range studied in this paper, the microchannel heat exchangers with reentrant cavities present better heat transfer performance and smaller pressure drop. A microchannel heat exchanger with trapezoidal-shaped cavities has best heat transfer performance, and a microchannel heat exchanger with fan-shaped cavities has the smallest pressure drop. Research limitations/implications The fluid is incompressible and the inlet temperature is constant. Practical implications It is an effective way to enhance heat transfer and reduce pressure drop by adding cavities in microchannels and the data will be helpful as guidelines in the selection of reentrant cavities. Originality/value This paper provides the pressure drop and heat transfer performance analysis of microchannel heat exchangers with various reentrant cavities, which can provide reference for heat transfer augmentation of an existing microchannel heat exchanger in a thermal design.


2021 ◽  
Vol 9 (1) ◽  
pp. 60-71
Author(s):  
Abeth Novria Sonjaya ◽  
Marhaenanto Marhaenanto ◽  
Mokhamad Eka Faiq ◽  
La Ode M Firman

The processed wood industry urgently needs a dryer to improve the quality of its production. One of the important components in a dryer is a heat exchanger. To support a durable heat transfer process, a superior material is needed. The aim of the study was to analyze the effectiveness of the application of cross-flow flat plate heat exchangers to be used in wood dryers and compare the materials used and simulate heat transfer on cross-flow flat plate heat exchangers using Computational Fluid Dynamic simulations. The results showed that there was a variation in the temperature out of dry air and gas on the flat plate heat exchanger and copper material had a better heat delivery by reaching the temperature out of dry air and gas on the flat plate type heat exchanger of successive cross flow and.   overall heat transfer coefficient value and the effectiveness value of the heat exchanger of the heat transfer characteristics that occur with the cross-flow flat plate type heat exchanger in copper material of 251.74725 W/K and 0.25.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Faraz Afshari ◽  
Azim Doğuş Tuncer ◽  
Adnan Sözen ◽  
Halil Ibrahim Variyenli ◽  
Ataollah Khanlari ◽  
...  

Purpose Using suspended nanoparticles in the base fluid is known as one of the most efficient ways for heat transfer augmentation and improving the thermal efficiency of various heat exchangers. Different types of nanofluids are available and used in different applications. The main purpose of this study is to investigate the effects of using hybrid nanofluid and number of plates on the performance of plate heat exchanger. In this study, TiO2/water single nanofluid and TiO2-Al2O3/water hybrid nanofluid with 1% particle weight ratio have been used to prepare hybrid nanofluid to use in plate type heat exchangers with three various number of plates including 8, 12 and 16. Design/methodology/approach The experiments have been conducted with the aim of examining the impact of plates number and used nanofluids on heat transfer enhancement. The performance tests have been done at 40°C, 45°C, 50°C and 55°C set outlet temperatures and in five various Reynolds numbers between 1,600 and 3,800. Also, numerical simulation has been applied to verify the heat and flow behavior inside the heat exchangers. Findings The results indicated that using both nanofluids raised the thermal performance of all tested exchangers which have a various number of plates. While the major outcomes of this study showed that TiO2-Al2O3/water hybrid nanofluid has priority when compared to TiO2/water single type nanofluid. Utilization of TiO2-Al2O3/water nanofluid led to obtaining an average improvement of 7.5%, 9.6% and 12.3% in heat transfer of heat exchangers with 8, 12 and 16 plates, respectively. Originality/value In the present work, experimental and numerical analyzes have been conducted to investigate the influence of using TiO2-Al2O3/water hybrid nanofluid in various plate heat exchangers. The attained findings showed successful utilization of TiO2-Al2O3/water nanofluid. Based on the obtained results increasing the number of plates in the heat exchanger caused to obtain more increment by using both types of nanofluids.


1978 ◽  
Vol 100 (2) ◽  
pp. 177-179 ◽  
Author(s):  
R. K. Shah

Laminar hydrodynamic entry length solutions for circular and noncircular ducts are essential in proper design of compact heat exchangers and other heat transfer and fluid flow devices. A closed form equation has been proposed to present these solutions for the circular tube, parallel plates, rectangular, equilateral triangular, and concentric annular ducts. The necessary constants are evaluated and it is shown that the proposed correlation predicts the apparent friction factors within ± 2.4 percent.


Author(s):  
B. Mathew ◽  
H. Hegab

In this paper the effect of axial heat conduction on the thermal performance of a microchannel heat exchanger with non-adiabatic end walls is studied. The two ends of the wall separating the coolant are assumed to be subjected to boundary condition of the first kind. As the end walls are not insulated heat transfer between the microchannel heat exchanger and its surroundings occur. Analytical equations have been formulated for predicting the axial temperature of the coolants and the wall as well as for determining the effectiveness of both fluids. The effectiveness of the fluids has been found to depend on the NTU, axial heat conduction parameter and end wall temperatures. The heat transfer through the end walls have been expressed in nondimensional terms. The nondimensional heat transfer from both ends of the wall also depends on the axial heat conduction parameter and temperature gradient at the end walls. A new parameter, performance factor, has been proposed for comparing the variation in effectiveness due to axial heat conduction coupled with heat transfer with the effectiveness without axial heat conduction. The effectiveness of both the hot and cold fluid for several cases of end wall temperatures and axial heat conduction parameter are analyzed in this paper for better understanding of heat transfer dynamics of microchannel heat exchangers.


2019 ◽  
Vol 113 ◽  
pp. 109220 ◽  
Author(s):  
Chidanand K. Mangrulkar ◽  
Ashwinkumar S. Dhoble ◽  
Sunil Chamoli ◽  
Ashutosh Gupta ◽  
Vipin B. Gawande

Author(s):  
Aihua Wang ◽  
Samir F. Moujaes ◽  
Yitung Chen ◽  
Valery Ponyavin

Heat transfer in compact heat exchangers is augmented by the introduction of the offset strip fins. With the breakdown of the thermal and hydro boundary layers to boost heat transfer, the fins increase the friction power. Two heat exchangers of different fin geometries structures were built and tested. The results of the study show that the round-edge-fin heat exchanger has the smaller friction factor. A test rig was constructed to measure the friction factor of the offset strip fin heat exchangers with air. A modified hydraulic diameter was used to calculate the main parameters. The computational fluid dynamics package FLUENT was used to predict the flow in the heat exchanger. The numerical investigation was conducted and compared with experimental measurements.


2012 ◽  
Vol 33 (3) ◽  
pp. 1-24 ◽  
Author(s):  
Dawid Taler

Abstract This paper presents a numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined using a nonlinear regression method. Correlation coefficients were determined from the condition that the sum of squared liquid and air temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg-Marquardt method. The uncertainty in estimated parameters was determined using the error propagation rule by Gauss. The outlet temperature of the liquid and air leaving the heat exchanger was calculated using the analytical model of the heat exchanger.


2010 ◽  
Vol 297-301 ◽  
pp. 960-965 ◽  
Author(s):  
Jean Michel Hugo ◽  
Emmanuel Brun ◽  
Frédéric Topin ◽  
Jérôme Vicente

This numerical study focuses on the determination of macroscopic (effective) properties from pore scale calculation. These results will be applied to heat exchangers design. The computational domain -representative of heat exchanger section- is a parallelepiped filled with metallic foam, heated on one face and crossed by a forced fluid flow. Conjugate heat transfer and fluid flow are computed using finite volume approach on the actual solid matrix and pore space topology obtained from X-ray tomograms. Calculated heat transfer coefficient and flow law parameters are in good agreement with literature data. An active foam length is defined and measured in order to provide optimal design characteristic for foamed heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document