scholarly journals Spatiotemporal patterns of future meteorological drought in the Yellow River Basin based on SPEI under RCP scenarios

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guangxing Ji ◽  
Zhizhu Lai ◽  
Dan Yan ◽  
Leying Wu ◽  
Zheng Wang

Purpose The purpose of this study is to assess the spatiotemporal patterns of future meteorological drought in the Yellow River Basin under different representative concentration pathway (RCP) scenarios. Design/methodology/approach Delta method is used to process the future climate data of the global climate models, then analyzed the spatiotemporal variation trend of drought in the Yellow River Basin based on standardized precipitation evaporation index (SPEI) under four RCP scenarios. Findings This research was funded by the National Natural Science Foundation of China (41901239), Soft Science Research Project of Henan Province (212400410077, 192400410085), the National Key Research and Development Program of China (2016YFA0602703), China Postdoctoral Science Foundation (2018M640670) and the special fund of top talents in Henan Agricultural University (30501031). Originality/value This study can provide support for future meteorological drought management and prevention in the Yellow River Basin and provide a theoretical basis for water resources management.

Author(s):  
Xiao-jun Wang ◽  
Jian-yun Zhang ◽  
Shamsuddin Shahid ◽  
Lang Yu ◽  
Chen Xie ◽  
...  

Purpose The purpose of this paper is to develop a statistical-based model to forecast future domestic water demand in the context of climate change, population growth and technological development in Yellow River. Design/methodology/approach The model is developed through the analysis of the effects of climate variables and population on domestic water use in eight sub-basins of the Yellow River. The model is then used to forecast water demand under different environment change scenarios. Findings The model projected an increase in domestic water demand in the Yellow River basin in the range of 67.85 × 108 to 62.20 × 108 m3 in year 2020 and between 73.32 × 108 and 89.27 × 108 m3 in year 2030. The general circulation model Beijing Normal University-Earth System Model (BNU-ESM) predicted the highest increase in water demand in both 2020 and 2030, while Centre National de Recherches Meteorologiques Climate Model v.5 (CNRM-CM5) and Model for Interdisciplinary Research on Climate- Earth System (MIROC-ESM) projected the lowest increase in demand in 2020 and 2030, respectively. The fastest growth in water demand is found in the region where water demand is already very high, which may cause serious water shortage and conflicts among water users. Originality/value The simple regression-based domestic water demand model proposed in the study can be used for rapid evaluation of possible changes in domestic water demand due to environmental changes to aid in adaptation and mitigation planning.


Author(s):  
Yang Li ◽  
Zhixiang Xie ◽  
Yaochen Qin ◽  
Zhicheng Zheng

Purpose This paper aims to study the temporal and spatial variation of vegetation and the influence of climate change on vegetation coverage in the Yellow River basin, China. The current study aimed to evaluate the role of a series of government-led environmental control projects in restoring the ecological environment of the Yellow River basin. Design/methodology/approach This paper uses unary linear regression, Mann–Kendall and wavelet analyses to study the spatial–temporal variations of vegetation and the response to climate changes in the Yellow River, China. Findings The results showed that for the past 17 years, not only the mean annual increase rate of the Normalized Difference Vegetation Index (NDVI) was 0.0059/a, but the spatial heterogeneity also yields significant results. The vegetation growth in the southeastern region was significantly better than that in the northwestern region. The variation period of the NDVI in the study area significantly shortened, and the most obvious oscillation period was half a year, with two peaks in one year. In addition, there are positive and negative effects of human activities on the change of vegetation cover of the Loess Plateau. The project of transforming cultivated land to forest and grassland promotes the increase of vegetation cover of the Loess plateau. Unfortunately, the regional urbanization and industrialization proliferated, and the overloading of grazing, deforestation, over-reclamation, and the exploitation and development of the energy area in the grassland region led to the reduction of the NDVI. Fortunately, the positive effects outweigh the negative ones. Originality/value This paper provides a comprehensive insight to analysis of the vegetation change and the responses of vegetation to climate change, with special reference to make the planning policy of ecological restoration. This paper argues that ecological restoration should be strengthened in areas with annual precipitation less than 450 mm.


2019 ◽  
Vol 138 (3-4) ◽  
pp. 1971-1989 ◽  
Author(s):  
Mingwei Ma ◽  
Huijuan Cui ◽  
Wenchuan Wang ◽  
Xudong Huang ◽  
Xinjun Tu

Sign in / Sign up

Export Citation Format

Share Document