scholarly journals The impact of crop farmers’ decisions on future land use, land cover changes in Kintampo North Municipality of Ghana

Author(s):  
Enoch Bessah ◽  
Abdullahi Bala ◽  
Sampson Kweku Agodzo ◽  
Appollonia Aimiosino Okhimamhe ◽  
Emmanuel Amoah Boakye ◽  
...  

Purpose This paper aims to assess the rate and land category contributing to the changes in seven land-uses in the Kintampo North Municipality of Ghana and the effect of the decisions of land users on future landscapes. Design/methodology/approach LANDSAT images were classified to generate land use/cover maps to detect changes that had occurred between 1986 and 2014. In total, 120 farmers were also interviewed to determine their perceptions on land use changes. Interval, category and transition levels of changes were determined. Savanna woodland, settlement and forest were mostly converted to farmland in both intervals (1986-2001 and 2001-2014). Findings Results showed that rock outcrop, plantation, cropland and savanna woodland increased at an annual rate of 13.86, 1.57, 0.82 and 0.33 per cent, respectively, whilst forest, settlement and water body decreased at 4.90, 1.84 and 1.17 per cent annual rate of change, respectively. Approximately, 74 per cent of farmers will not change land use in the future, while 84.2 per cent plan to increase farm sizes. Research limitations/implications The study shows that more land cover will be targeted for conversion as farmers expand their farmlands. There is the need for strict implementation of appropriate land use/cover policies to sustain food production in the region in this era of changing climate and population increase. Originality/value This research assessed the land use changes in the Kintampo North Municipality and its impacts on agriculture and carbon stocks release via land use changes. It identified how the decisions of the local farmers on land management will affect future landscape.

Author(s):  
Marj Tonini ◽  
Joana Parente ◽  
Mario Pereira

Abstract. The wildland-/rural-urban interface (WUI/RUI) is a particularly important aspect of the fire regime. In Mediterranean basin most of the fires in this pyro region are caused by humans and the risk and consequences are particularly high due to the close proximity to population, human infrastructures and urban areas. Population increase, urban growth and the rapid changes in land use incurred in Europe over the last 30 years has been unprecedented, especially nearby the metropolitan areas, and some of these trends are expected to continue. Associated to high socioeconomic development, Portugal experienced in the last decades significant land cover/land use changes (LCLUC), population dynamics and demographic trends in response to migration, rural abandonment, and ageing of rural population. This study aims to assess the evolution of RUI in Portugal, from 1990 to 2012, based on LCLUC providing also a quantitative characterization of forest fires dynamics in relation to the burnt area. Obtained results disclose important LCLUC which spatial distribution is far from uniform within the territory. A significant increase in artificial surfaces is registered nearby the main metropolitan communities of the northwest and littoral-central and southern regions, whilst the abandonment of agricultural land nearby the inland urban areas leads to an increase of uncultivated semi-natural and forest areas. Within agricultural areas, heterogeneous patches suffered the greatest changes and are the main contributors to the increase of urban areas. Moreover these are among the LCLU classes with higher burnt area, reasons why heterogeneous agricultural areas have been included in the definition of RUI. Finally, the mapped RUI’s area, burnt area and burnt area within RUI allow to conclude that, form 1990 to 2012 in Portugal, RUI increased more than two thirds and total burnt area decreased one third. Nevertheless, burnt area within RUI doubled, which emphasize the significance of RUI for land and fire managers. This research provides a first quantitative global assessment of RUI in Portugal and presents an innovative analysis on the impact of land use changes on burnt areas.


2015 ◽  
Vol 8 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Amare Sewnet

Abstract Land cover is the physical and biological cover of the surface whereas land use covers the results of human activities for the exploitation of it. The land cover and landuse change is caused by both, natural and anthropogenic factors. The objective of this study was to detect land cover/use changes in Infraz Watershed. The study has used ArcGIS10 and ERDAS IMAGINE10, landsat images of 1973, 1986, 1995 and 2011 and socio-economic data to analyze land cover and landuse changes of Infraz watershed. The study has found that due to the population increase and improper agricultural activity bush and wetlands have declined where as farm and settlement lands expanded between the study years. About 1044 wetlands and 6338.7 ha of bush lands were lost and converted to cultivated and farm lands, grass lands and forest covers which were increased by 6685.3, 357.7 and 338.3 ha between the study periods respectively. There is an urgent need to limit the population growth rate and implementing land use policy in the Infraz watershed.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 656
Author(s):  
Sofia Bajocco ◽  
Silvia Vanino ◽  
Marco Bascietto ◽  
Rosario Napoli

The exploration of crop seasonality across a region offers a way to help understand the phenological spatial patterns of complex landscapes, like agricultural ones. Knowing the role of environmental factors in influencing crop phenology patterns and processes is a key aspect for understanding the impact of climate and land use changes on agricultural landscape dynamics. We identified pixels with similar phenological behavior (i.e., pheno-clusters) and compared them to the land cover map of the study area to assess the role of the land management component in controlling the phenological patterns identified. Results demonstrated that soil texture is the most important factor for permanent crops, while large amount of rainfall and high values of available water content are the main drivers in spring cultivations (i.e., irrigated crops). Scarce water availability (in terms of soil texture, low annual precipitation and high minimum temperature) represented the main driving factor for non-irrigated crops, whose phenology is characterized by summer drought and fall-winter productivity. Compared to vegetation maps that use only land cover from a single season or period, using seasonality of the NDVI time series to classify the agricultural landscape provides different and more ecologically relevant information about croplands.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Yulius Yulius ◽  
T A Tanto ◽  
M Ramdhan ◽  
A Putra ◽  
H L Salim

ABSTRACT Bungus district of Kabung Bay is a growing region located at coastal zone of southern city of Padang, west sumatra. As a growing region, the Bungus district brings some impacts on population increase and degradation of environment quality. Therefore, it is needed an effort to identify land use changes and the distribution of land use in this region from the year of 2003 until 2013. This research used landsat 7 imagery in 2003 and landsat 8 imagery in 2013. The data were analysed descriptively using geographical informastion system. The result showd that (1) swamp land cover experienced the smallest land use change between 2003 until 2013 (0.02 ha/yr), meanwhile forest land use had the biggest change of about 224.8 ha/yr. The biggest addition of land cover belong to settlement area about 47.59 hectare, and the other hand occur on bush about -31.68 hectare. Keywords: Bungus district, landcover changes, Landsat imagery, GIS


2020 ◽  
pp. 1-13
Author(s):  
K. V. Suryabhagavan ◽  
Mintesnot Berhanu ◽  
Bezawork Afework ◽  
Afework Bekele ◽  
M. Balakrishnan

The African Civet (Civettictis Civetta Shreber, 1778) is one of the important natural animal resources of Ethiopia. Ethiopia is the major producer of the Civet perineal gland secretion (known as “civet”) used extensively as a base in perfume industry. However, there is no improvement in civet farming processes in rural Ethiopia, and the farmers still live in a poor state. Majority of rural population in Ethiopia is depending on agriculture, and hence land-use changes during the past couple of decades are mostly linked to agricultural development. Present study was undertaken to predict the spatial distribution of land-use and land-cover and habitats of the African Civet here in after referred as civet(s) in Illu-Abbabora Zone, Southwest Ethiopia. Landsat images of three years: 1985, 2000 and 2018 were classified to generate land-use/land-cover maps, locate forests and other land classes. Results of the study revealed that forest and wetland habitats decreased by an estimated 11.12 km2/yr-1 and 2.39 km2/yr-1, respectively during the period of 1985-2018. In contrast, the extent of agricultural land, urban area and Gumro tea plantation increased by an estimated 13.36 km2/yr-1, 0.59 km2/yr-1 and 0.43 km2/yr-1, respectively. Habitat suitability approach was found to have great potential in predicting potential habitats of the civets through complex non-linear models.


Land ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 115 ◽  
Author(s):  
Melaku Bogale Fitawok ◽  
Ben Derudder ◽  
Amare Sewnet Minale ◽  
Steven Van Passel ◽  
Enyew Adgo ◽  
...  

The fast-paced urbanization of recent decades entails that many regions are facing seemingly uncontrolled land-use changes (LUCs) that go hand in hand with a range of environmental and socio-economic challenges. In this paper, we use an integrated cellular automata–Markov chain (CA–MC) model to analyze and predict the urban expansion of and its impact on LUC in the city of Bahir Dar, Ethiopia. To this end, the research marshals high-resolution Landsat images of 1991, 2002, 2011, and 2018. An analytical hierarchy process (AHP) method is then used to identify the biophysical and socioeconomic factors underlying the expansion in the research area. It is shown that, during the period of study, built-up areas are rapidly expanding in the face of an overall decline of the farmland and vegetation cover. Drawing on a model calibration for 2018, the research predicts the possible geographies of LUC in the Bahir Dar area for 2025, 2034, and 2045. It is predicted that the conversions of other land-use types into built-up areas will persist in the southern, southwestern, and northeastern areas of the sprawling city, which can mainly be traced back to the uneven geographies of road accessibility, proximity to the city center, and slope variables. We reflect on how our findings can be used to facilitate sustainable urban development and land-use policies in the Bahir Dar area.


2021 ◽  
Vol 6 (6) ◽  
pp. 230-240
Author(s):  
Eze Promise I ◽  
Elemuwa IC ◽  
Lawrence Hart

Yenegoa Town has in recent years witnessed rapid City growth and Urban development and much of these developments are unplanned and unregulated. This has seriously impacted on wetlands in several locations of the town as persistent Wetlands reclamations are being witnessed in study area. This prompted the need for the study which is aimed to map wetlands location in Yenagoa’s urban area using GIS and Remote Sensing approach. The study analyzes land use/land cover changes (LULC) using LANDSAT(5) TM, LANDSAT(5) ETM and LANDSAT(7) OLI satellite imageries of 1990, 2000, 2010 and 2020 respectively. Through this study, the pattern of urban expansion for Thirty years were been studied. The satellite imageries covering the area were acquired and analyzed using ArcGIS 10.1 and ENVI 5.0 software. The supervised image classification method was adopted and the classification results were validated using the Kappa Index of Agreement (KIA) yielding an accuracy of 0.69m for year 1990, 0.62m for year 2000, 0.58m for year 2010 and 0.73m for 2020. A total area of 13,741.4 hectares was delineated in the study area which is identified as Yenagoa’s urban area. After processing the imageries, four land use/land cover (LULC) classes where considered, and the results shows that Built-up area continuously increased in land area from 1990 -2020 with total percentage change of 273.31% (4,178.7ha) and total annual rate of change of 25.33. Vegetation have total percentage change of 38.55% (974.34Ha) and total annual rate of change of 3.85, wetland cover loss with total percentage Change of 61.96% (-51,44.99ha) and total annual rate of change of -6.19ha, and the water body have loss of total percentage of -2.16% (-8.05Ha) and total annual rate of change of -0.22ha wetland at Yenegwe loss by Total %change of -29.918% ( -197.95ha), and wetland at Igbogene loss by total percentage change of -36.028% (-358.7ha). The research findings also revealed that the wetlands in Anyama, Swali, Kpansia and Opolo Towns were completely lost from the third Epoch of 2010, this may be as a result of persistence reclamation of wetland in this parts of the study area. The Markov Chain predicted model were utilized for predicting the likely changes in land use land cover for a period of thirty years. The predicted results also indicates that wetland size of 32.47,%, 30.68% and 28.99% may likely be lost by the year 2030, 2040 and 2050 respectively in study area if no action is taking by concerned authorities to forestall the factors responsible for the lost in wetland. The study justified the dynamics of remote sensing and GIS techniques in modeling wetlands changees over these periods, wise use of wetland resources and improvement of institutional arrangement were recommended so that wetland policies can be fully integrated into the planning process across all disciplines.


2016 ◽  
Vol 12 (5) ◽  
pp. 90
Author(s):  
Abdou Ballo ◽  
Souleymane Sidi Traoré ◽  
Baba Coulibaly ◽  
Cheick Hamalla Diakité ◽  
Moriké Diawara ◽  
...  

In Ziguéna terroir, the combined effects of drought and anthropogenic actions led to the widespread degradation of vegetation cover and of land. This work aimed at characterizing the dynamics of land use and land cover in relation to anthropogenic pressures in Ziguéna terroir. The methodology consisted in identifying and characterizing land use and land cover classes. Landsat images for the years 1986 and 2013 and population data for the years 1987, 1998 and 2009 were used. Visual interpretation of the images and post-classification comparison of the results were used to generate land use and land cover classes and calculate their rate of change. The results reveal that the natural vegetation has lost 55% of its original coverage (1514.3 ha) between 1987 and 2013. During the same period, the agricultural area increased by 47% (1608 ha). The projection of land use and land cover classes predicted an increase of agricultural land of about 34.60% by year 2030 compared to its coverage of year 2013 (+1191.03 ha) at the expense of natural vegetation which will lose about 40.63% of its coverage (-1121.70 ha). The dynamics of agricultural land is strongly linked to population growth rates with a correlation coefficient r equal to 0.99. This confirms a strong anthropogenic influence on land use and land cover dynamics. The results show the usefulness of remote sensing for mapping land use and land cover. Nevertheless it would be interesting to take into account the socioeconomic aspects for proper understanding of the dynamics.


2018 ◽  
Vol 7 (3.14) ◽  
pp. 155 ◽  
Author(s):  
Mohd Ekhwan Toriman ◽  
Hassan Mohammed Ali Alssgeer ◽  
Muhammad Barzani Gasim ◽  
Khairul Amri Kamarudin ◽  
Mabroka Mohamed Daw ◽  
...  

The impact of land use change on water quality of Nerus River Kuala Terengganu is an event that needs to be taken seriously in this study. The objectives of the study area are to carried out 13 parameters water quality samplings and analysis of Nerus River as well as to classify water quality concentration based on NWQS and WQI classifications; to interpret 2000 and 2013 land use/land cover maps of Nerus River Basin and to evaluate water quality data by statistical technique such as similarities and dissimilarities between sampling stations to determine pollution sources. Methods that were used in study area GIS will use to classify land cover/land use changes in the catchment between 2000 and 2013 land use maps. Water quality analysis and monitoring were done based on three sampling stations during both dry and wet seasons, involving analysis 13 water quality parameters. Water quality classification is using the National Water Quality Standard (NWQS) and the Water Quality Index (WQI). Statistical analysis such as similarities and dissimilarities between sampling stations was applied. Results of the study show that the river was classified as class II (slightly polluted), III (moderately polluted) in accordance with previous studies.  


2020 ◽  
Vol 10 (21) ◽  
pp. 7897
Author(s):  
Qin Jiang ◽  
Xiaogang He ◽  
Jun Wang ◽  
Jiahong Wen ◽  
Haizhen Mu ◽  
...  

The impacts of anthropogenic land use and land cover (LULC) changes on the spatiotemporal distribution of precipitation in megacities have been highlighted in studies on urban climate change. In this study, we conducted a quantitative analysis of urban growth on the impact on precipitation in Shanghai, China. We considered four periods of LULC data in 1979, 1990, 2000 and 2010, in addition to the long-term (1979–2010) trend of daily precipitation. The results indicate that the trend in precipitation exhibit different characteristics for urban (Ur), outskirt of urban (OUr) and outer suburb (OS) regions. Most Ur regions had an upward trend in annual and extreme precipitation during 1979–2010, while annual precipitation for the OUr and OS regions exhibited a decreasing trend. From 1979 to 2010, the areas of fastest expansion were located in the OUr region. The OS region, far away from the central area, had a relatively lower rate of change. In addition, OUr regions with rapid LULC changes exhibited higher increasing trends in annual and daily extreme precipitation, which is critical for the identification of frequent precipitation areas and the reliable projection of further changes.


Sign in / Sign up

Export Citation Format

Share Document