Numerical simulation of top roller pressure and deformation in ring spinning with three draft zones using finite element method

Author(s):  
Xiaojuan Zhang ◽  
Juan Wu ◽  
Bojun Xu ◽  
Xinjin Liu

Purpose This paper presented a new kind of ring spinning frame with four pairs of rollers, and they are the front roller and the front top roller, the first middle roller (FMR) and the first middle top roller (FMTR), the second middle roller and the second middle top roller, the back roller and the back top roller. The FMR is the front roller of middle draft zone, and the back roller of the front draft zone. Therefore, the deformation of FMTR during spinning is an important factor for yarn quality, which was studied in this paper. Design/methodology/approach In this paper, by finite element method (FEM), the pressure and deformation of FMTR were studied. FMTR made from steel and sleeved carbon fiber were compared. 5.8tex, 4.9tex and 3.9tex cotton yarns were spun, and corresponding numerical simulations of FMTR pressure and deformation were presented in ANSYS software and comparatively analyzed. Then, corresponding yarn qualities were compared. Findings The results indicate that pressure and deformation of FMTR have little effects on yarn tenacity and hairiness, while have great effects on yarn evenness. For 5.8tex and 4.9tex cotton yarn, yarns spun by FMTR made from sleeved carbon fiber have larger pressure and deformation at the middle of nipper bites of FMR and FMTR, and yarn evenness is better. For 3.9tex cotton yarns, at the middle of nipper bites of FMR and FMTR, FMTR made from steel has smaller pressure. But deformation of FMTR made from steel is larger, and yarn evenness is better. Originality/value This paper studied pressure and deformation of FMTR by finite element method (FEM), which serve as a theoretical underpinning for yarn spinning in three draft zones ring spinning machine.

2010 ◽  
Author(s):  
Sheng Yan Li ◽  
Bin Gang Xu ◽  
Xiao Ming Tao ◽  
Jane W. Z. Lu ◽  
Andrew Y. T. Leung ◽  
...  

2016 ◽  
Vol 51 (12) ◽  
pp. 1783-1794 ◽  
Author(s):  
Ahmad Reza Ghasemi ◽  
Mohammad Mohammadi Fesharaki ◽  
Masood Mohandes

In this study, circular disk model and cylinder theory for two dimension (2D) and three dimension (3D), respectively, have been used to determine residual stresses in three-phase representative volume element. The representative volume element is consisting of three phases: carbon fiber, carbon nanotubes, and polymer matrix, that carbon fiber is reinforced by carbon nanotube using electrophoresis method. Initially, the residual stresses analysis of two-phase representative volume element has been implemented. The two-phase representative volume element has been divided to carbon fiber and matrix phases with different volume fractions. In the three-phase representative volume element, although the volume fraction of carbon fiber is constant and equal to 60%, the volume fractions of carbon nanotubes for various cases are different as 0%, 1%, 2%, 3%, 4%, and 5%. Also, there are two different methods to reinforce the fiber according to different coefficients of thermal expansion of the carbon fiber and carbon nanotube in two longitudinal and transverse directions; carbon nanotubes are placed on carbon fiber either parallel or around it like a ring. Subsequently, finite element method and circular disk model have been used for analyzing micromechanic of the residual stresses for 2D and then the results of stress invariant obtained by the finite element method have been compared with the circular disk model. Moreover, for 3D model, the finite element method and cylinder theory have been utilized for micromechanical analysis of the residual stresses and the results of stress invariant obtained by them, have been compared with each other. Results of the finite element method and analytical model have good agreement in 2D and 3D models.


2020 ◽  
pp. 1-13
Author(s):  
José Luis Colín-Martínez ◽  
Victor Lopez-Garza ◽  
Isaac Hernández-Arriaga ◽  
María Guadalupe Navarro-Rojero

Currently, wind energy in Mexico is growing and the same is happening worldwide, so projects with national technologies for the manufacture of wind turbine components must be developed. In this work, a proposal is made for the design of the hub of the rotor for a 50-kW turbine, the objective is to make a new proposal to improve the previous design of project P07 of the Centro Mexicano de Innovación en Energía Eólica (CEMIEEólico), which has a welded mechanical hub for a prototype turbine 30 kW. In addition, a simulation is performed through analysis of the finite element method (FEA) by applying certain load elements with the simplified load method of the international standard IEC 61400-2. In these simulations, the load cases of the norm that directly influence the cube are analyzed, then simulated in the ANSYS software to validate the proposed design, mainly analyzing the stresses and deformations. The results obtained will serve as a reference to manufacture the cube and evaluate the feasibility of carrying out a commercial stage with a view to making national components for wind farms.


Author(s):  
M. K. Sarwar ◽  
A. A. Shabana ◽  
Toshikazu Nakanishi

Abstract The objective of this study is to develop a design procedure that integrates multibody techniques, the finite element method, and experimental modal analysis techniques. Multibody techniques and the finite element method are first used to develop and numerically test the performance of the proposed design. Based on this computer analysis, a prototype model can be built. The vibration modal parameters of this model can be determined experimentally and used with general purpose multibody computer programs to evaluate the performance of the design. The obtained numerical results can be compared with the results obtained previously using multibody techniques and the finite element method. Adjustments can then be made in the finite element description in order to obtain a more realistic model that compares well with the experimental data. Using the more realistic finite element model, design modifications can be made in order to improve the performance of the design model. The use of the design methodology proposed in this paper is demonstrated using a flexible tracked vehicle model that consists of fifty four interconnected bodies. In this model, the nonlinear contact forces that describe the interaction between the track links and the vehicle components and the ground are developed. The nonlinear dynamic equations of the vehicle are developed in terms of a coupled set of reference and chassis elastic modal coordinates. The flexibility of the chassis of the tracked vehicle is described using the finite element method and experimentally identified modal parameters. The results obtained using the finite element model are compared with the results obtained using experimentally identified modal parameters.


2011 ◽  
Vol 346 ◽  
pp. 751-756
Author(s):  
Xin Yan Tang

Based on Muskhelishvili’s theoretical expressions of the Saint-Venant’s problem, using the combination of Crack3D code and Ansys software, a new combination finite element method to calculate the Saint-Venant’s torsion problem including crack is proposed. In order to illustrate its application, the numerical examples for a torsion cylinder with crack are given and the numerical results are satisfactory.


2013 ◽  
Vol 652-654 ◽  
pp. 1478-1481 ◽  
Author(s):  
Xiao Bao Liu ◽  
Zhi Hong Yin

Focus on the problems in thickness design of shells with multi-holes, an optimized design method based on theory of finite element method is presented. In this method, mathematical model of optimized design is built up based on theory of finite element method and theory of plates and shells, and realized method of optimized design of thickness based on ANSYS software is established. Additionally, the influence factors of optimized design of thickness are analyzed, including load forms, constraint types. In the end, an example about cellular board design shows this method is a good way and available in engineering projects.


Sign in / Sign up

Export Citation Format

Share Document