Kuznets curve with parabola-shaped ultra-wideband antenna with defected ground plane for communications

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lalitha Bhavani Konkyana ◽  
Sudhakar Alapati

Purpose This paper aims to state the configuration of the proposed antenna which is competent to many networks such as LTE and X band applications. The experimental study encountered the significance of the proposed antenna. Design/methodology/approach A novel compact Kuznets curve with parabola-shaped quad-band notched antenna is demonstrated in this paper. The presented prototype is ascertained on a composite material composed of woven fiberglass cloth with an epoxy resin binder. The resulting ultra-wideband antenna ranges 3.1–3.54 GHz, 5.17–5.51 GHz, 5.74–6.43 GHz and 6.79–7.60 GHz. To avoid the frequency bands which cause UWB interference,the projected antenna has been incorporated with slotted patch. The proposed antenna design is attained in four steps. The simple circular patch antenna model with defected ground plane is subjected to stepwise progression by including parabola-shaped slot and U shaped slot on the patch to attain four notched bands. Findings This projected antenna possesses an optimal bond among simulated and measured outcomes,which is more suitable for the quad notched band applications. Substrate analysis is done by varying substrate material, and notch behavior is presented. The proposed method’s optimum performance in metrics such as return loss, voltage standing wave ratio and radiation pattern varies its frequency range from 2.56 to 7.6 GHz. Originality/value The antenna adaptation of the defected ground plane has achieved through the quad notched band with operating frequency ranges 2.56 to 7.6 GHz and with eliminated frequency ranges 3.55–5.16 GHz, 5.52–5.73 GHz, 6.44–6.78 GHz and 7.66–10.6 GHz.

2020 ◽  
Vol 10 (6) ◽  
pp. 6557-6562
Author(s):  
S. Alotaibi ◽  
A. A. Alotaibi

In this work, a new ultra-wideband (UWB) antenna design with 2.08GHz to 12GHz impedance bandwidth and triple-band specifications is presented. The proposed antenna is formed by a truncated square patch, a partial ground plane, and a 50Ω microstrip line. Three different types of slots were used in order to induce notched bands. A C-shaped slot is etched on the radiating patch to obtain a notched band in 3.31-4.21GHz for WiMAX. An inverted U-shaped slot in the micro-strip line induces a second notched band in order to reduce the interference with the WLAN [5.04-6.81GHz]. Finally, two inverted L-shaped slots around the micro-ribbon line on the ground plane allow the X-band [9.13 to 10.75GHz]. The antenna has dimensions of 32×28×1.6mm3. The Ansoft software (HFSS) was used to simulate the proposed structure. The simulation results are in good agreement with the measurement results. The antenna shows an omnidirectional radiation pattern.


2013 ◽  
Vol 846-847 ◽  
pp. 521-525
Author(s):  
Zheng Lin Zhou ◽  
Ming Li

A compact coplanar waveguide fed UWB (ultra-wideband) antenna with triple band-notched characteristics is presented. The rectangle radiation patch is used in the new design, and the bandwidth of the UWB antenna is extended by using circle corner for the rectangle cut from the ground. A parasitic element is added, whereas an inverted U-shaped slot is cut on the top of the CPW ground plane and a U-shaped slot is cut on the rectangle radiation patch. As a result, a triple band-notched characteristic is obtained, by which the potential interference between UWB and WLAN (Wireless Local Area Networks), C-band and X-band systems can be effectively reduced.


2014 ◽  
Vol 7 (5) ◽  
pp. 543-550
Author(s):  
Wessam Zayd Shareef ◽  
Alyani Ismail ◽  
Adam R.H. Alhawari

This paper presents a designed notched band ultra-wideband (UWB) printed antenna using coplanar waveguide-fed configuration. Simple technique of perforating the substrate and modifying the ground plane and radiator patch was used to achieve UWB for the designed antenna at smaller structure. Narrow arch-shaped slot was introduced to the patch of the proposed antenna to obtain the band rejection function around the 5.4 GHz frequency to avoid the interference with WLAN applications. The proposed antenna was fabricated and the measurement result is found in well agreement with the simulation result. In addition to the acquirable UWB bandwidth, the designed antenna is capable to exhibit high radiation efficiency and omni-directional pattern.


2015 ◽  
Vol 713-715 ◽  
pp. 1265-1268
Author(s):  
Xiang Lai Zheng ◽  
Qing Fan Shi ◽  
Dan Feng Lu ◽  
Chang Yi Ji

With the increasing demand for different applications of antennas, especially multi-band and ultra-wideband antenna, we propose a novel tri-band, ultra-wideband (UWB) antenna with deformed split ring resonator (DSRR). The antenna consists of a partly covered ground plane and a deformed split ring resonator. By integrating the partly covered ground plane and the deformed split ring resonator and optimizing with CST Microwave Studio numerically, the proposed antenna produces three working bands ranging from 2.87GHz to 3.92GHz, 5.08 to 6.30GHz and 7.55 to 9.32GHz, which also satisfy the requirement of UWB. The three working bands cover the WIMAX band in 3.5GHz, the WLAN bands in 5.2/5.8GHz, and X-band, respectively. The radiation pattern is omnidirectional and the direction gain at every frequency is above 3.2 dBi. So the proposed antenna is suitable for multi-band communication applications.


2021 ◽  
Vol 2062 (1) ◽  
pp. 012004
Author(s):  
Gudla Ramalakshmi ◽  
P Mallikarjuna Rao

Abstract The rapid advancements in wireless technology desires compact, miniaturized, multiband and ultra wideband antennas. Fractal antennas have been proved as a source for fulfilling these demands. In this paper a 2nd order Koch fractal antenna of size 29.6 × 35.7mm2 designed on FR4-epoxy substrate material of dielectric constant (ɛr) 4.4 with a height of 1.6mm. This antenna is named as ANTENNA-1. To increase this antenna’s performance a meta material unit cell has been placed on the ground plane to serve multi band applications and is named as ANTENNA-2, which is the proposed antenna in this paper. The simulations have been carried out for both the antennas using ANSYS HFSS tool over the frequency sweep of (1-12GHz). The simulation results of proposed antenna producing 7 frequency bands which serves Wi-Fi, WLAN, C-band, and X band wireless communications. The simulation results like return loss, VSWR values have a good matching with the measured return loss, VSWR results of the fabricated antenna


Author(s):  
Sumon Modak ◽  
Taimoor Khan

Abstract This study presents a novel configuration of a cuboidal quad-port ultra-wideband multiple-input and multiple-output antenna with WLAN rejection characteristics. The designed antenna consists of four F-shaped elements backed by a partial ground plane. A 50 Ω microstrip line is used to feed the proposed structure. The geometry of the suggested antenna exhibits an overall size of 23 × 23 × 19 mm3, and the antenna produces an operational bandwidth of 7.6 GHz (3.1–10.7 GHz). The notched band characteristic at 5.4 GHz is accomplished by loading a pair of spiral electromagnetic bandgap structures over the ground plane. Besides this, other diversity features such as envelope correlation coefficient, and diversity gain are also evaluated. Furthermore, the proposed antenna system provides an isolation of −15 dB without using any decoupling structure. Therefore, to validate the reported design, a prototype is fabricated and characterized. The overall simulated performance is observed in very close agreement with it's measured counterpart.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 269
Author(s):  
Ayman A. Althuwayb ◽  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Pancham Shukla ◽  
Ernesto Limiti

This research article describes a technique for realizing wideband dual notched functionality in an ultra-wideband (UWB) antenna array based on metamaterial and electromagnetic bandgap (EBG) techniques. For comparison purposes, a reference antenna array was initially designed comprising hexagonal patches that are interconnected to each other. The array was fabricated on standard FR-4 substrate with thickness of 0.8 mm. The reference antenna exhibited an average gain of 1.5 dBi across 5.25–10.1 GHz. To improve the array’s impedance bandwidth for application in UWB systems metamaterial (MTM) characteristics were applied it. This involved embedding hexagonal slots in patch and shorting the patch to the ground-plane with metallic via. This essentially transformed the antenna to a composite right/left-handed structure that behaved like series left-handed capacitance and shunt left-handed inductance. The proposed MTM antenna array now operated over a much wider frequency range (2–12 GHz) with average gain of 5 dBi. Notched band functionality was incorporated in the proposed array to eliminate unwanted interference signals from other wireless communications systems that coexist inside the UWB spectrum. This was achieved by introducing electromagnetic bandgap in the array by etching circular slots on the ground-plane that are aligned underneath each patch and interconnecting microstrip-line in the array. The proposed techniques had no effect on the dimensions of the antenna array (20 mm × 20 mm × 0.87 mm). The results presented confirm dual-band rejection at the wireless local area network (WLAN) band (5.15–5.825 GHz) and X-band satellite downlink communication band (7.10–7.76 GHz). Compared to other dual notched band designs previously published the footprint of the proposed technique is smaller and its rejection notches completely cover the bandwidth of interfering signals.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


2019 ◽  
Vol 12 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Liping Han ◽  
Jing Chen ◽  
Wenmei Zhang

AbstractA compact ultra-wideband (UWB) monopole antenna with reconfigurable band-notch characteristics is demonstrated in this paper. It is comprised of a modified rectangular patch and a defected ground plane. The band-notch property in the WiMAX and WLAN bands is achieved by etching an open-ended slot on the radiating patch and an inverted U-shaped slot on the ground plane, respectively. To obtain the reconfigurable band-notch performance, two PIN diodes are inserted in the slots, and then the notch-band can be switched by changing the states of the PIN diodes. The antenna has a compact size of 0.47 λ1 × 0.27 λ1. The simulated and measured results indicate that the antenna can operate at a UWB mode, two single band-notch modes, and a dual band-notch mode. Moreover, stable radiation patterns are obtained.


Sign in / Sign up

Export Citation Format

Share Document