On the application of Big Data in future large-scale intelligent Smart City installations

Author(s):  
Sylva Girtelschmid ◽  
Matthias Steinbauer ◽  
Vikash Kumar ◽  
Anna Fensel ◽  
Gabriele Kotsis

Purpose – The purpose of this article is to propose and evaluate a novel system architecture for Smart City applications which uses ontology reasoning and a distributed stream processing framework on the cloud. In the domain of Smart City, often methodologies of semantic modeling and automated inference are applied. However, semantic models often face performance problems when applied in large scale. Design/methodology/approach – The problem domain is addressed by using methods from Big Data processing in combination with semantic models. The architecture is designed in a way that for the Smart City model still traditional semantic models and rule engines can be used. However, sensor data occurring at such Smart Cities are pre-processed by a Big Data streaming platform to lower the workload to be processed by the rule engine. Findings – By creating a real-world implementation of the proposed architecture and running simulations of Smart Cities of different sizes, on top of this implementation, the authors found that the combination of Big Data streaming platforms with semantic reasoning is a valid approach to the problem. Research limitations/implications – In this article, real-world sensor data from only two buildings were extrapolated for the simulations. Obviously, real-world scenarios will have a more complex set of sensor input values, which needs to be addressed in future work. Originality/value – The simulations show that merely using a streaming platform as a buffer for sensor input values already increases the sensor data throughput and that by applying intelligent filtering in the streaming platform, the actual number of rule executions can be limited to a minimum.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammed Anouar Naoui ◽  
Brahim Lejdel ◽  
Mouloud Ayad ◽  
Abdelfattah Amamra ◽  
Okba kazar

PurposeThe purpose of this paper is to propose a distributed deep learning architecture for smart cities in big data systems.Design/methodology/approachWe have proposed an architectural multilayer to describe the distributed deep learning for smart cities in big data systems. The components of our system are Smart city layer, big data layer, and deep learning layer. The Smart city layer responsible for the question of Smart city components, its Internet of things, sensors and effectors, and its integration in the system, big data layer concerns data characteristics 10, and its distribution over the system. The deep learning layer is the model of our system. It is responsible for data analysis.FindingsWe apply our proposed architecture in a Smart environment and Smart energy. 10; In a Smart environment, we study the Toluene forecasting in Madrid Smart city. For Smart energy, we study wind energy foresting in Australia. Our proposed architecture can reduce the time of execution and improve the deep learning model, such as Long Term Short Memory10;.Research limitations/implicationsThis research needs the application of other deep learning models, such as convolution neuronal network and autoencoder.Practical implicationsFindings of the research will be helpful in Smart city architecture. It can provide a clear view into a Smart city, data storage, and data analysis. The 10; Toluene forecasting in a Smart environment can help the decision-maker to ensure environmental safety. The Smart energy of our proposed model can give a clear prediction of power generation.Originality/valueThe findings of this study are expected to contribute valuable information to decision-makers for a better understanding of the key to Smart city architecture. Its relation with data storage, processing, and data analysis.


2017 ◽  
Vol 37 (1) ◽  
pp. 75-104 ◽  
Author(s):  
Rashid Mehmood ◽  
Royston Meriton ◽  
Gary Graham ◽  
Patrick Hennelly ◽  
Mukesh Kumar

Purpose The purpose of this paper is to advance knowledge of the transformative potential of big data on city-based transport models. The central question guiding this paper is: how could big data transform smart city transport operations? In answering this question the authors present initial results from a Markov study. However the authors also suggest caution in the transformation potential of big data and highlight the risks of city and organizational adoption. A theoretical framework is presented together with an associated scenario which guides the development of a Markov model. Design/methodology/approach A model with several scenarios is developed to explore a theoretical framework focussed on matching the transport demands (of people and freight mobility) with city transport service provision using big data. This model was designed to illustrate how sharing transport load (and capacity) in a smart city can improve efficiencies in meeting demand for city services. Findings This modelling study is an initial preliminary stage of the investigation in how big data could be used to redefine and enable new operational models. The study provides new understanding about load sharing and optimization in a smart city context. Basically the authors demonstrate how big data could be used to improve transport efficiency and lower externalities in a smart city. Further how improvement could take place by having a car free city environment, autonomous vehicles and shared resource capacity among providers. Research limitations/implications The research relied on a Markov model and the numerical solution of its steady state probabilities vector to illustrate the transformation of transport operations management (OM) in the future city context. More in depth analysis and more discrete modelling are clearly needed to assist in the implementation of big data initiatives and facilitate new innovations in OM. The work complements and extends that of Setia and Patel (2013), who theoretically link together information system design to operation absorptive capacity capabilities. Practical implications The study implies that transport operations would actually need to be re-organized so as to deal with lowering CO2 footprint. The logistic aspects could be seen as a move from individual firms optimizing their own transportation supply to a shared collaborative load and resourced system. Such ideas are radical changes driven by, or leading to more decentralized rather than having centralized transport solutions (Caplice, 2013). Social implications The growth of cities and urban areas in the twenty-first century has put more pressure on resources and conditions of urban life. This paper is an initial first step in building theory, knowledge and critical understanding of the social implications being posed by the growth in cities and the role that big data and smart cities could play in developing a resilient and sustainable transport city system. Originality/value Despite the importance of OM to big data implementation, for both practitioners and researchers, we have yet to see a systematic analysis of its implementation and its absorptive capacity contribution to building capabilities, at either city system or organizational levels. As such the Markov model makes a preliminary contribution to the literature integrating big data capabilities with OM capabilities and the resulting improvements in system absorptive capacity.


2019 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pulkit Tiwari ◽  
P. Vigneswara Ilavarasan ◽  
Sushil Punia

Purpose The purpose of this paper is to provide a systematic literature review on the technological aspects of smart cities and to give insights about current trends, sources of research, contributing authors and countries. It is required to understand technical concepts like information technology, big data analytics, Internet of Things and blockchain needed to implement smart city models successfully. Design/methodology/approach The data were collected from the Scopus database, and analysis techniques like bibliometric analysis, network analysis and content analysis were used to obtain research trends, publications growth, top contributing authors and nations in the domain of smart cities. Also, these analytical techniques identified various fields within the literature on smart cities and supported to design a conceptual framework for Industry 4.0 adoption in a smart city. Findings The bibliometric analysis shows that research publications have increased significantly over the last couple of years. It has found that developing countries like China is leading the research on smart cities. The network analytics and article classification identified six domains within the literature on smart cities. A conceptual framework for the smart city has proposed for the successful implementation of Industry 4.0 technologies. Originality/value This paper explores the role of Industry 4.0 technologies in smart cities. The bibliometric data on publications from the year 2013 to 2018 were used and investigated by using advanced analytical techniques. The paper reviewS key technical concepts for the successful execution of a smart city model. It also gives an idea about various technical considerations required for the implementation of the smart city model through a conceptual framework.


2019 ◽  
Vol 8 (2) ◽  
pp. 1922-1927

Ingenious Techniques for creation of Smart Cities by Big Data Technology & Urban modeling simulation by MATSimas the smart cities are on nascent stage in India. The extension of huge information and the advancement of Internet of Things (IoT) innovations have assumed a significant job in the practicality of keen city activities. Enormous information offer the potential for urban areas to get significant bits of knowledge from a lot of information gathered through different sources, and the IoT permits the joining of sensors, radiofrequency recognizable proof, and Bluetooth in reality condition utilizing exceedingly organized administrations. Thus the job of urban reenactment models and their perception are utilized to help territorial arranging offices assess elective transportation ventures, land use guidelines, and natural insurance arrangements. Typical urban simulations provide spatially distributed data about number of inhabitants, land prices, traffic, and other variables for ex- MATSim is an activity-based transport simulation framework designed to simulate large scale scenarios. Such technologies which have been developed in the past few years have proven to be very effective in smart cities of various countries. This project is an attempt to study the feasibility of such modified system, by understanding the implementation of such technologies to improve the existing smart cities and those which are about to become one. This is done by proposing an idea that is by implementing a big data server in the proposed smart city, the data will be collected through smart sensors which will then be sent to server and the mined data will be converted to simplified data for planners, engineers etc. in order to make a economic, self-sustainable & fully automated smart city


Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 349-371
Author(s):  
Hassan Mehmood ◽  
Panos Kostakos ◽  
Marta Cortes ◽  
Theodoros Anagnostopoulos ◽  
Susanna Pirttikangas ◽  
...  

Real-world data streams pose a unique challenge to the implementation of machine learning (ML) models and data analysis. A notable problem that has been introduced by the growth of Internet of Things (IoT) deployments across the smart city ecosystem is that the statistical properties of data streams can change over time, resulting in poor prediction performance and ineffective decisions. While concept drift detection methods aim to patch this problem, emerging communication and sensing technologies are generating a massive amount of data, requiring distributed environments to perform computation tasks across smart city administrative domains. In this article, we implement and test a number of state-of-the-art active concept drift detection algorithms for time series analysis within a distributed environment. We use real-world data streams and provide critical analysis of results retrieved. The challenges of implementing concept drift adaptation algorithms, along with their applications in smart cities, are also discussed.


2020 ◽  
Vol 12 (14) ◽  
pp. 5595 ◽  
Author(s):  
Ana Lavalle ◽  
Miguel A. Teruel ◽  
Alejandro Maté ◽  
Juan Trujillo

Fostering sustainability is paramount for Smart Cities development. Lately, Smart Cities are benefiting from the rising of Big Data coming from IoT devices, leading to improvements on monitoring and prevention. However, monitoring and prevention processes require visualization techniques as a key component. Indeed, in order to prevent possible hazards (such as fires, leaks, etc.) and optimize their resources, Smart Cities require adequate visualizations that provide insights to decision makers. Nevertheless, visualization of Big Data has always been a challenging issue, especially when such data are originated in real-time. This problem becomes even bigger in Smart City environments since we have to deal with many different groups of users and multiple heterogeneous data sources. Without a proper visualization methodology, complex dashboards including data from different nature are difficult to understand. In order to tackle this issue, we propose a methodology based on visualization techniques for Big Data, aimed at improving the evidence-gathering process by assisting users in the decision making in the context of Smart Cities. Moreover, in order to assess the impact of our proposal, a case study based on service calls for a fire department is presented. In this sense, our findings will be applied to data coming from citizen calls. Thus, the results of this work will contribute to the optimization of resources, namely fire extinguishing battalions, helping to improve their effectiveness and, as a result, the sustainability of a Smart City, operating better with less resources. Finally, in order to evaluate the impact of our proposal, we have performed an experiment, with non-expert users in data visualization.


Smart Cities ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 662-685
Author(s):  
Stephan Olariu

Under present-day practices, the vehicles on our roadways and city streets are mere spectators that witness traffic-related events without being able to participate in the mitigation of their effect. This paper lays the theoretical foundations of a framework for harnessing the on-board computational resources in vehicles stuck in urban congestion in order to assist transportation agencies with preventing or dissipating congestion through large-scale signal re-timing. Our framework is called VACCS: Vehicular Crowdsourcing for Congestion Support in Smart Cities. What makes this framework unique is that we suggest that in such situations the vehicles have the potential to cooperate with various transportation authorities to solve problems that otherwise would either take an inordinate amount of time to solve or cannot be solved for lack for adequate municipal resources. VACCS offers direct benefits to both the driving public and the Smart City. By developing timing plans that respond to current traffic conditions, overall traffic flow will improve, carbon emissions will be reduced, and economic impacts of congestion on citizens and businesses will be lessened. It is expected that drivers will be willing to donate under-utilized on-board computing resources in their vehicles to develop improved signal timing plans in return for the direct benefits of time savings and reduced fuel consumption costs. VACCS allows the Smart City to dynamically respond to traffic conditions while simultaneously reducing investments in the computational resources that would be required for traditional adaptive traffic signal control systems.


2017 ◽  
Vol 117 (9) ◽  
pp. 1866-1889 ◽  
Author(s):  
Vahid Shokri Kahi ◽  
Saeed Yousefi ◽  
Hadi Shabanpour ◽  
Reza Farzipoor Saen

Purpose The purpose of this paper is to develop a novel network and dynamic data envelopment analysis (DEA) model for evaluating sustainability of supply chains. In the proposed model, all links can be considered in calculation of efficiency score. Design/methodology/approach A dynamic DEA model to evaluate sustainable supply chains in which networks have series structure is proposed. Nature of free links is defined and subsequently applied in calculating relative efficiency of supply chains. An additive network DEA model is developed to evaluate sustainability of supply chains in several periods. A case study demonstrates applicability of proposed approach. Findings This paper assists managers to identify inefficient supply chains and take proper remedial actions for performance optimization. Besides, overall efficiency scores of supply chains have less fluctuation. By utilizing the proposed model and determining dual-role factors, managers can plan their supply chains properly and more accurately. Research limitations/implications In real world, managers face with big data. Therefore, we need to develop an approach to deal with big data. Practical implications The proposed model offers useful managerial implications along with means for managers to monitor and measure efficiency of their production processes. The proposed model can be applied in real world problems in which decision makers are faced with multi-stage processes such as supply chains, production systems, etc. Originality/value For the first time, the authors present additive model of network-dynamic DEA. For the first time, the authors outline the links in a way that carry-overs of networks are connected in different periods and not in different stages.


i-com ◽  
2021 ◽  
Vol 20 (2) ◽  
pp. 177-193
Author(s):  
Daniel Wessel ◽  
Julien Holtz ◽  
Florian König

Abstract Smart cities have a huge potential to increase the everyday efficiency of cities, but also to increase preparation and resilience in case of natural disasters. Especially for disasters which are somewhat predicable like floods, sensor data can be used to provide citizens with up-to-date, personalized and location-specific information (street or even house level resolution). This information allows citizens to better prepare to avert water damage to their property, reduce the needed government support, and — by connecting citizens locally — improve mutual support among neighbors. But how can a smart city application be designed that is both usable and able to function during disaster conditions? Which smart city information can be used? How can the likelihood of mutual, local support be increased? In this practice report, we present the human-centered development process of an app to use Smart City data to better prepare citizens for floods and improve their mutual support during disasters as a case study to answer these questions.


Sign in / Sign up

Export Citation Format

Share Document