Effect of electron beam surface melting on the microstructure and wear behavior of Stellite 12 hardfacing

2019 ◽  
Vol 71 (5) ◽  
pp. 636-641
Author(s):  
Ali Abdul Munim Alhattab ◽  
Shaikh Asad Ali Dilawary ◽  
Amir Motallebzadeh ◽  
Cevat Fahir Arisoy ◽  
Huseyin Cimenoglu

PurposeThe purpose of this study is to investigate the effect of electron beam surface melting (EBSM) on the properties of Plasma Transfer Arc (PTA) deposited Stellite 12 hardfacing.Design/methodology/approachFor this purpose, structural characterization and dry sliding wear tests have been conducted on the hardfacings at room temperature. The wear tracks formed on the surfaces of the hardfacings were examined by a stylus-type profilometer and a scanning electron microscope.FindingsRefinement of the matrix and the carbides following EBSM process led to about 15 per cent increment in hardness as compared to PTA state. Despite an increase in the surface hardness, EBSM’ed hardfacing exhibited about 50 per cent lower sliding wear resistance than PTA hardfacing against alumina ball. According to the worn surface examinations, reduction in the wear resistance of Stellite 12 after EBSM process has been associated with the extensive refinement of the carbides which made them easier to be removed from the matrix during the sliding contact.Originality/valueThe authors of current study have applied EBSM to PTA deposited Stellite 12 hardfacing alloy to investigate if the surface structure and properties could be improved. More specifically the dry sliding wear performance of PTA and EBSM’ed hardfacings have been focused in the scope of this study. To the best of the authors’ knowledge, this approach, i.e. use of EBSM as a post deposition treatment of Stellite 12 hardfacings, has not been reported in open literature.

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 296 ◽  
Author(s):  
Chao Sun ◽  
Nannan Lu ◽  
Huan Liu ◽  
Xiaojun Wang ◽  
Xiaoshi Hu ◽  
...  

In this study, the dry sliding wear behaviors of SiC particle reinforced AZ91D matrix composites fabricated by stirring casting method were systematically investigated. The SiC particles in as-cast composites exhibited typical necklace-type distribution, which caused the weak interface bonding between SiC particles and matrix in particle-segregated zones. During dry sliding at higher applied loads, SiC particles were easy to debond from the matrix, which accelerated the wear rates of the composites. While at the lower load of 10 N, the presence of SiC particles improved the wear resistance. Moreover, the necklace-type distribution became more evident with the decrease of particle sizes and the increase of SiC volume fractions. Larger particles had better interface bonding with the matrix, which could delay the transition of wear mechanism from oxidation to delamination. Therefore, composites reinforced by larger SiC particles exhibited higher wear resistance. Similarly, owing to more weak interfaces in the composites with high content of SiC particles, more severe delamination occurred and the wear resistance of the composites was impaired.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1749 ◽  
Author(s):  
Qing Zhang ◽  
Jie Gu ◽  
Shuo Wei ◽  
Ming Qi

The dry sliding wear behavior of the Al-12Si-CuNiMg matrix alloy and its composite reinforced with Al2O3 fibers was investigated using a pin-on-disk wear-testing machine. The volume fraction of Al2O3 fibers in the composite was 17 vol.%. Wear tests are conducted under normal loads of 2.5, 5.0, and 7.5 N, and sliding velocities of 0.25, 0.50, and 1.0 m/s. Furthermore, the worn surfaces of the matrix alloy and the composite were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the wear resistance of the composite was inferior to that of the matrix alloy, which could be attributed to the high content of reinforcement and casting porosities in the composite. Worn-surface analysis indicates that the dominant wear mechanisms of both materials were abrasive wear and adhesive wear under the present testing conditions.


2014 ◽  
Vol 10 (2) ◽  
pp. 276-287
Author(s):  
Rajesh Siriyala ◽  
A. Gopala Krishna ◽  
P. Rama Murthy Raju ◽  
M. Duraiselvam

Purpose – Since, wear is the one of the most commonly encountered industrial problems leading to frequent replacement of components there is a need to develop metal matrix composites (MMCs) for achieving better wear properties. The purpose of this paper is to fabricate aluminum MMCs to improve the dry sliding wear characteristics. An effective multi-response optimization approach called the principal component analysis (PCA) was used to identify the sets of optimal parameters in dry sliding wear process. Design/methodology/approach – The present work investigates the dry sliding wear behavior of graphite reinforced aluminum composites produced by the molten metal mixing method by means of a pin-on-disc type wear set up. Dry sliding wear tests were carried on graphite reinforced MMCs and its matrix alloy sliding against a steel counter face. Different contact stress, reinforcement percentage, sliding distance and sliding velocity were selected as the control variables and the response selected was wear volume loss (WVL) and coefficient of friction (COF) to evaluate the dry sliding performance. An L25 orthogonal array was employed for the experimental design. Optimization of dry sliding performance of the graphite reinforced MMCs was performed using PCA. Findings – Based on the PCA, the optimum level parameters for overall principal component (PC) of WVL and COF have been identified. Moreover, analysis of variance was performed to know the impact of individual factors on overall PC of WVL and COF. The results indicated that the reinforcement percentage was found to be most effective factor among the other control parameters on dry sliding wear followed by sliding distance, sliding velocity and contact stress. Finally the wear surface morphology of the composites has been investigated using scanning electron microscopy. Practical implications – Various manufacturing techniques are available for processing of MMCs. Each technique has its own advantages and disadvantages. In particular, some techniques are significantly expensive compared to others. Generally the manufacturer prefers the low cost technique. Therefore stir casting technique which was used in this paper for manufacturing of Aluminum MMCs is the best alternative for processing of MMCs in the present commercial sectors. Since the most important criteria of a dry sliding wear behavior is to provide lower WVL and COF, this study has intended to prove the application of PCA technique for solving multi objective optimization problem in wear applications like piston rings, piston rods, cylinder heads and brake rotors, etc. Originality/value – Application of multi-response optimization technique for evaluation of tribological characteristics for Aluminum MMCs made up of graphite particulates is a first-of-its-kind approach in literature. Hence PCA method can be successfully used for multi-response optimization of dry sliding wear process.


2015 ◽  
Vol 642 ◽  
pp. 55-59 ◽  
Author(s):  
Shueiwan Henry Juang ◽  
Liang Jing Fan ◽  
Hsu Shuo Chang

In this study, the multi-pass friction stir processing (MP-FSP) technique was performed on ADC6 aluminum alloy + 5 wt% fly ash composite (A5FC) castings to increase their surface area. The dry sliding wear behaviors of the ADC6 alloy, A5FCs, and MP-FSPed A5FCs were evaluated. Dry sliding wear tests were performed using a ring-on-washer machine at a constant rotation speed of 100 rpm for 60 min, and the normal load was 10, 20, 30, and 40 N. The results showed that the MP-FSPed A5FCs had the lowest wear rates in the load range from 10 to 40 N, and adhesive wear was the major wear mechanism in these tests. The increased wear resistance was mainly due to grain refinement and elimination of casting defects after subjecting the ash composite to MP-FSP. The microstructure of the MP-FSPed A5FCs reveals that the sizes of the added raw fly ash particles decreased from micro-to nanoscale levels, and the nanoscale fly ash was uniformly dispersed in the aluminum matrix.


2005 ◽  
Vol 167 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Rakesh Kaul ◽  
P. Ganesh ◽  
Pragya Tiwari ◽  
R.V. Nandedkar ◽  
A.K. Nath

2011 ◽  
Vol 415-417 ◽  
pp. 170-173
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Yi Chao Ding ◽  
Yi San Wang

A wear resistant TiC-Cr7C3/Fe surface composite was produced by cast technique and in-situ synthesis technique. The microstructure and dry-sliding wear behavior of the surface composite was investigated using scanning electron microscope(SEM), X-ray diffraction(XRD) and MM-200 wear test machine. The results show that the surface composite consists of TiC and Cr7C3as the reinforcing phase, α-Fe and γ-Fe as the matrix. The surface composite has excellent wear-resistance under dry-sliding wear test condition with heavy loads.


Sign in / Sign up

Export Citation Format

Share Document