Pricing contract design of a multi-supplier-multi-retailer supply chain in hybrid electricity market

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhenning Zhu ◽  
Lingcheng Kong ◽  
Gulizhaer Aisaiti ◽  
Mingzhen Song ◽  
Zefeng Mi

PurposeIn the hybrid electricity market consisting of renewable and conventional energy, the generation output of renewable power is uncertain because of its intermittency, and the power market demand is also fluctuant. Meanwhile, there is fierce competition among power producers in the power supply market and retailers in the demand market after deregulation, which increases the difficulty of renewable energy power grid-connection. To promote grid-connection of renewable energy power in the hybrid electricity market, the authors construct different contract decision-making models in the “many-to-many” hybrid power supply chain to explore the pricing strategy of renewable energy power grid-connecting.Design/methodology/approachConsidering the dual-uncertainty of renewable energy power output and electricity market demand, the authors construct different decision-making models of wholesale price contract and revenue-sharing contract to compare and optimize grid-connecting pricing, respectively, to maximize the profits of different participants in the hybrid power supply chain. Besides, the authors set different parameters in the models to explore the influence of competition intensity, government subsidies, etc. on power pricing. Then, a numerical simulation is carried out, they verify the existence of the equilibrium solutions satisfying the supply chain coordination, compare the differences of pricing contracts and further analyze the variation characteristics of optimal contract parameters and their interaction relations.FindingsRevenue-sharing contract can increase the quantity of green power grid-connection and realize benefits Pareto improvement of all parties in hybrid power supply chain. The competition intensity both of power supply and demand market will have an impact on the sharing ratio, and the increase of competition intensity results in a reduction of power supply chain coordination pressure. The power contract price, spot price and selling price have all been reduced with the increase of the sharing ratio, and the price of renewable power is more sensitive to the ratio change. The sharing ratio shows a downward trend with the increase of government green power subsidies.Originality/valueOn the basis of expanding the definition of hybrid power market and the theory of newsvendor model, considering the dual-uncertainty of green power generation output and electricity market demand, this paper builds and compares different contract decision-making models to study the grid-connection pricing strategy of renewable energy power. And as an extension of supply chain structure types and management, the authors build a “many-to-many” power supply chain structure model and analyze the impact of competition intensity among power enterprises and the government subsidy on the power grid-connecting pricing.

2019 ◽  
Vol 119 (9) ◽  
pp. 1861-1887
Author(s):  
Zhenning Zhu ◽  
Lingcheng Kong ◽  
Jiaping Xie ◽  
Jing Li ◽  
Bing Cao

Purpose In the hybrid electricity market, renewable energy power generator faces the uncertainty of power market demand and the randomness of the renewable energy generation output. In order to improve the grid-connected quantity of green power, the purpose of this paper is to design the pricing mechanism for renewable energy power generator with revenue-sharing contract in a two-stage “multi-single” electricity supply chain which contains a single dominant power retailer and two kinds of power suppliers providing different power energy species. Design/methodology/approach Considering the dual uncertainties of renewable energy power output and power market demand, the authors design the full-cooperative contract decision-making model, wholesale price contract decision-making model and revenue-sharing contract decision-making model to compare and optimize grid-connected pricing in order to maximize profit of different parties in power supply chain. Then, this paper performs a numerical simulation, discusses the existence of the equilibrium analytical solutions to satisfy the supply chain coordination conditions and analyzes the optimal contract parameters’ variation characteristics and their interaction relationship. Findings The authors find that the expected profits of the parties in the hybrid power supply chain are concave about their decision variables in each decision-making mode. The revenue-sharing contract can realize the Pareto improvement for all parties’ interest of the supply chain, and promote the grid-connected quantity of green power effectively. The grid-connected price will reduce with the increase of revenue-sharing ratio, and this impact will be greater on the renewable energy power. The greater the competition intensity in power supply side, the smaller the revenue-sharing ratio from power purchaser. And for the same rangeability of competition intensity, the revenue-sharing ratio reduction of thermal power is less than that of the green power. The more the government subsidizing green power supplier, the smaller the retailer sharing revenue to it. Practical implications Facing with the dual uncertainties of green power output and market demand and the competition of thermal power in hybrid electricity market, this study can provide a path to solve the problem of renewable energy power grid-connecting. The results can help green power become competitive in hybrid power market under loose regulations. And this paper suggests that the government subsidy policy should be more tactical in order to implement a revenue-sharing contract of the power supply chain. Originality/value This paper studies the renewable energy electricity grid-connected pricing under the uncertainty of power supply and market demand, and compares different contract decision-making strategies in order to achieve the power supply chain coordination. The paper also analyzes the competition between thermal power and renewable energy power in hybrid electricity market.


2019 ◽  
Vol 119 (2) ◽  
pp. 412-450 ◽  
Author(s):  
Jiaping Xie ◽  
Weisi Zhang ◽  
Lihong Wei ◽  
Yu Xia ◽  
Shengyi Zhang

Purpose The purpose of this paper is to examine the impact of renewable energy on the power supply chain and to study whether the renewable generator or the power grid that purchases power from the power spot market is better when the actual generation of renewable energy is insufficient. The authors want to compare and analyze the different power supply chain operation modes and discuss the optimal mode selection for renewable energy generator and power grid in different situations. Design/methodology/approach This paper studies the grid-led price competition game in the power supply chain, in which the power grid as a leader decides the price of transmission and distribution, and generators determine the power grid price. The renewable energy power generator and the traditional energy power generator conduct a price competition game; on the other hand, the power grid and power generators conduct Stackelberg games. The authors analyze the power supply of single power generator and two power generators, respectively, and research on the situation that the renewable energy cannot be fully recharged when the actual power generation is insufficient. Findings The study finds that both renewable and traditional power grid prices decline as price sensitivity coefficient of demand and installed capacity of renewable energy generators increase. Power grid premium decreases as the price sensitivity coefficient of demand increases, but rises as the installed capacity of renewable energy generator increases. When there is a shortage of power, if the installed capacity of renewable energy is relatively small and price sensitivity coefficient of demand is relatively large, the grid purchases the power from power spot market and shares cost with renewable energy generators, leading to higher expected profits of the renewable energy generators. On the contrary, the renewable energy generators prefer to make up power shortage themselves. For the power grid, purchasing the power by the renewable energy generators when there is a power shortage can bring more utility to the power grid when the installed capacity of renewable energy is lower and the demand price sensitivity coefficient is higher. When the installed capacity of renewable energy is high and the price sensitivity coefficient of demand is moderate, or the installed capacity of renewable energy is moderate and the demand price sensitivity coefficient is high, a generator that simultaneously possesses two kinds of energy source will bring more utility to the power grid. If the installed capacity of renewable energy and the demand price sensitivity coefficient both are small or the installed capacity of renewable energy and the price sensitivity coefficient of demand both are large, the power grid prefers to purchase the power by itself when there is a power shortage. Practical implications The goal of our paper analysis is to explore the implications of the theoretical model and address the series of research questions regarding the impact of the renewable energy on the power supply chain. The results of this study have key implications for reality. This paper sheds light on the power supply chain operation mode selection, which can potentially be used for the renewable energy generators to choose their operating mode and can also help traditional energy generators and power grid enterprises maximize their utility. This paper also has some references for the government to formulate the corresponding renewable energy development policy. Originality/value This paper studies the power operation mode under the uncertainty of supply and demand, and compares the advantages and disadvantages of renewable energy generator that makes up the shortage or the power grid purchases the power from power spot market then shares cost with the renewable energy generator. This paper analyzes the power grid-led coordination problem in a power supply chain, compares and analyzes the price competition game model of single power generator and dual power generators, and compares the different risk preferences of power grid.


2018 ◽  
Vol 6 (3) ◽  
pp. 193-213 ◽  
Author(s):  
Jiaping Xie ◽  
Weisi Zhang ◽  
Yu Xia ◽  
Ling Liang ◽  
Lingcheng Kong

Abstract In the existing electricity market, the traditional power suppliers and renewable energy generators coexist in the power supply side. In the power supply side, renewable energy generators generate power by wind and other natural conditions, leading renewable energy output a certain randomness. However, the low marginal generating cost and the reduction of carbon emissions, and thus brings a certain advantage for renewable energy compared to alternative energy. Electricity, as a special commodity, stable and adequate power supply is a necessary guarantee for economic and social development. Power shortage situation is not allowed in the power system, and the extra power needs to be handled for the purpose of safety. In this paper, the hybrid power generated by renewable energy generators and traditional energy generators is used as power supply, and then the electricity market sells hybrid power to electricity consumers, the hybrid power system determines the optimal daytime price, nighttime price, and the optimal installed capacity of the renewable energy suppliers. We find that the installed capacity of renewable energy increases first and then decreases with the increase of the price sensitivity coefficient of traditional energy supply. Electricity demand is negatively related to electricity price in the current period, and is positively related to price in the other period. The average price of day and night is only related to the total potential demand of day and night and the total generation probability of renewable energy. The price difference between daytime and nighttime is positively related to potential electricity demand, and negatively related to the sensitivity coefficient of electricity price.


2021 ◽  
Author(s):  
Talat Genc

Abstract This paper examines General Electric's new combined-cycle gas turbine GT11N2 M upgrade. The new technology provides operational flexibility and promises output and cost efficiencies. To investigate the benefis of this technology, we propose a power supply chain model and construct cost functions for generation and service and maintenance using actual market and firm level data. The upstream firm is General Electric (GE) who invests in GT11N2 generators. The investment results in innovation of GT11N2 M upgrade facilitating different operational modes and efficiencies. The downstream firm is TransAlta's Sarnia plant which utilizes this new technology to produce and sell electricity to residential, small business, industrial, and wholesale market customers in Ontario, Canada. We quantify equilibrium prices and outputs under various efficiency rates in costs of fuel, service, and maintenance. We find a large variation in electricity generation depending on which operational mode ("Maximum Continuous Load" or "Performance" or "Lifetime") of GT11N2 M is selected. Under a mixed usage of all modes, we expect 44% output expansion to the industrial customers and 0.2% sales increase in the Ontario wholesale electricity market. Under this mode, GE's price should go down by 0.4% due to fuel cost efficiency. If GE's cost was $2.8 per MWh, GE should have asked Trans-Alta an average price of $5.822 per MWh for service and maintenance prior to the new technology. With the new technology, GE should charge $5.502 per MWh to Trans Alta. While GE's sales to wholesale market are almost stable, the sales to industrial customers increase nonlinearly in downstream efficiency rates. This shows that the amount of greenhouse gas emissions will be largely impacted by the choice of operational mode and how long it is used.


Author(s):  
Kristīne Šeļepova

Raksta mērķis ir apzināt atjaunojamo energoresursu tiesisko regulējumu, tā atbalsta shēmas un problemātiku. Raksta autore skaidro, vai šo tiesību aizsardzības līmenis ir pietiekams, vai ir pieņemtas nepieciešamās materiālo tiesību normas, kā arī vai ir pietiekoši tiesiskie līdzekļi, kas nodrošina šo tiesību aizsardzības ievērošanu, kā arī nākamos soļus energoresursu liberalizācijas posmos. Use of renewable energy increases independence from imported energy, reduces greenhouse gas emissions, as well as increases security of energy supply. However, energy industry concedes that power becomes more vulnerable because of historical paradigms; independent power base is replaced with production from renewable energy sources. This is due to subsidies in the investment priority being cost-effective renewable resources projects. Thus, it is necessary to develop a solution defining how volatile and unpredictable renewable energy sources integrated into the European electricity market can be, while ensuring safe and uninterrupted power supply.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fatao Wang ◽  
Di Wu ◽  
Hongxin Yu ◽  
Huaxia Shen ◽  
Yuanjun Zhao

PurposeBased on the typical service supply chain (SSC) structure, the authors construct the model of e-tailing SSC to explore the coordination relationship in the supply chain, and big data analysis provides realistic possibilities for the creation of coordination mechanisms.Design/methodology/approachAt the present stage, the e-commerce companies have not yet established a mature SSC system and have not achieved good synergy with other members of the supply chain, the shortage of goods and the greater pressure of express logistics companies coexist. In the case of uncertain online shopping market demand, the authors employ newsboy model, applied in the operations research, to analyze the synergistic mechanism of SSC model.FindingsBy analyzing the e-tailing SSC coordination mechanism and adjusting relevant parameters, the authors find that the synergy mechanism can be implemented and optimized. Through numerical example analysis, the authors confirmed the feasibility of the above analysis.Originality/valueBig data analysis provides a kind of reality for the establishment of online SSC coordination mechanism. The establishment of an online supply chain coordination mechanism can effectively promote the efficient allocation of supplies and better meet consumers' needs.


2019 ◽  
Vol 2019 (16) ◽  
pp. 3230-3233 ◽  
Author(s):  
Wenzhi He ◽  
Feng Xue ◽  
Fenglei Zheng ◽  
Yongyan Zhou ◽  
Kun Liu ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. 531-565 ◽  
Author(s):  
R. Ghasemy Yaghin ◽  
P. Sarlak

Purpose This paper aims to propose an integrated supplier selection, order allocation, transportation planning model, along with investment planning for corporate social responsibility (CSR), over a given multi-period horizon under uncertainty. Furthermore, a customer’s behavior to pay more money for items with CSR attributes is considered in the total market demand. Design/methodology/approach The objective functions, i.e. social value of purchasing, total profit (TP), total delivery lead-time, total air pollution, total water pollution and total energy consumption with regard to a number of constraints are jointly considered in a multi-product system. It is worth noting that operational- and sustainable-related parameters are usually vague and imprecise in this area. Therefore, this paper develops a new fuzzy multi-objective optimization model to capture this inherent fuzziness in critical data. Findings Through the numerical examples in the textile industry, the application of the model and usefulness of solution procedures are carried out. The numerical results obtained from the proposed approach indicate the efficiency of the solution algorithm in different instances. Moreover, the authors observe that social investment of the buyer, to stimulate market demand, can affect the TP and also involve the total contribution of suppliers in social responsibility. Originality/value This research work concentrates on providing a procurement and inventory model through the lens of sustainability to enable textile supply chain managers and related industries to apply the approach to their inventory control and supply management. Totally, the proposed methodology could be applied by many fabric buyers of textile industry tackling purchasing issues and attempting to perfect understanding of social supply chains.


2017 ◽  
Vol 117 (9) ◽  
pp. 1842-1865 ◽  
Author(s):  
Bo Yan ◽  
Xiao-hua Wu ◽  
Bing Ye ◽  
Yong-wang Zhang

Purpose The Internet of Things (IoT) is used in the fresh agricultural product (FAP) supply chain, which can be coordinated through a revenue-sharing contract. The purpose of this paper is to make the three-level supply chain coordinate in IoT by considering the influence of FAP on market demand and costs of controlling freshness on the road. Design/methodology/approach A three-level FAP supply chain that comprises a manufacturer, distributor, and retailer in IoT is regarded as the research object. This study improves the revenue-sharing contract, determines the optimal solution when the supply chain achieves maximum profit in three types of decision-making situations, and develops the profit distribution model based on the improved revenue-sharing contract to coordinate the supply chain. Findings The improved revenue-sharing contract can coordinate the FAP supply chain that comprises a manufacturer, distributor, and retailer in IoT, as well as benefit all enterprises in the supply chain. Practical implications Resource utilization rate can be improved after coordinating the entire supply chain. Moreover, loss in the circulation process is reduced, and the circulation efficiency of FAPs is improved because of the application of IoT. The validity of the model is verified through a case analysis. Originality/value This study is different from other research in terms of the combination of supply chain coordination, FAPs, and radio frequency identification application in IoT.


Sign in / Sign up

Export Citation Format

Share Document