A novel robot kinematic calibration method based on common perpendicular line model

Author(s):  
Chen Shen ◽  
Youping Chen ◽  
Bing Chen ◽  
Yu Qiao

Purpose This paper aims to propose a novel robot kinematic calibration method based on the common perpendicular line (CPL) model to improve the absolute accuracy of industrial robots. Design/methodology/approach The deviation between the nominal and actual twists is considered the CPL transformation, which includes the rotation about the CPL and the translation along the CPL. By using the invariance of the reciprocal product of the two spatial lines, the previous deviation was analyzed in the neighbor space of the base frame origin. In this space, the line vector of the CPL contained only four independent parameters: two orientation elements and two moment elements. Thus, the CPL model has four independent parameters for the revolute joint and two parameters for the prismatic joint. Findings By simulations and experiment conducted on a SCARA robot and a 6-DOF PUMA robot, the effectiveness of the novel method for calibration of industrial robot is validated. Originality/value The CPL model avoided the normalization and orthogonalization in the iterative identification procedure. Therefore, identifying the CPL model was not only simpler but also more accurate than that of the traditional model. In addition, the results of the CPL transformation strictly conformed to the constraints of the twist.

Author(s):  
Wang Zhenhua ◽  
Xu Hui ◽  
Chen Guodong ◽  
Sun Rongchuan ◽  
Lining Sun

Purpose – The purpose of this paper is to present a distance accuracy-based industrial robot kinematic calibration model. Nowadays, the repeatability of the industrial robot is high, while the absolute positioning accuracy and distance accuracy are low. Many factors affect the absolute positioning accuracy and distance accuracy, and the calibration method of the industrial robot is an important factor. When the traditional calibration methods are applied on the industrial robot, the accumulative error will be involved according to the transformation between the measurement coordinate and the robot base coordinate. Design/methodology/approach – In this manuscript, a distance accuracy-based industrial robot kinematic calibration model is proposed. First, a simplified kinematic model of the robot by using the modified Denavit–Hartenberg (MDH) method is introduced, then the proposed distance error-based calibration model is presented; the experiment is set up in the next section. Findings – The experimental results show that the proposed calibration model based on MDH and distance error can improve the distance accuracy and absolute position accuracy dramatically. Originality/value – The proposed calibration model based on MDH and distance error can improve the distance accuracy and absolute position accuracy dramatically.


Author(s):  
Ying Cai ◽  
Peijiang Yuan ◽  
Dongdong Chen

Purpose To improve the accuracy of the industrial robots’ absolute positioning, a Kriging calibration is proposed. Design/methodology/approach This method particularly designs a semivariogram for connecting the joint space and the working space. After that, Kriging equations are determined and solved to predict the position errors of targets. Subsequently, a simple and convenient error compensation, which can be implemented on the control command, is proposed. Findings The verification experiment of the position-error multiplicity and the Kriging calibration experiment are done in the KUKA R210 R2700 industrial robot. The position-error multiplicity experiment reveals that the position error of the industrial robot varies with the joint angle sets. Besides, the Kriging calibration experiment shows that the maximum of the spatial position errors is reduced from 1.2906 to 0.2484 mm, which reveals the validity of the Kriging calibration. Originality/value The special designed semivariation allows this method to be flexible and practical. It can be used in various fields where the angle solutions of industrial robots should be adapted according to the optimal demand and the environment, such as the optimal trajectory planning and the obstacle avoidance. Besides, this method can provide accuracy positioning results.


2021 ◽  
Vol 11 (3) ◽  
pp. 1287
Author(s):  
Tianyan Chen ◽  
Jinsong Lin ◽  
Deyu Wu ◽  
Haibin Wu

Based on the current situation of high precision and comparatively low APA (absolute positioning accuracy) in industrial robots, a calibration method to enhance the APA of industrial robots is proposed. In view of the "hidden" characteristics of the RBCS (robot base coordinate system) and the FCS (flange coordinate system) in the measurement process, a comparatively general measurement and calibration method of the RBCS and the FCS is proposed, and the source of the robot terminal position error is classified into three aspects: positioning error of industrial RBCS, kinematics parameter error of manipulator, and positioning error of industrial robot end FCS. The robot position error model is established, and the relation equation of the robot end position error and the industrial robot model parameter error is deduced. By solving the equation, the parameter error identification and the supplementary results are obtained, and the method of compensating the error by using the robot joint angle is realized. The Leica laser tracker is used to verify the calibration method on ABB IRB120 industrial robot. The experimental results show that the calibration method can effectively enhance the APA of the robot.


CIRP Annals ◽  
2006 ◽  
Vol 55 (1) ◽  
pp. 1-6 ◽  
Author(s):  
A. Watanabe ◽  
S. Sakakibara ◽  
K. Ban ◽  
M. Yamada ◽  
G. Shen ◽  
...  

Author(s):  
LianZheng Ge ◽  
Jian Chen ◽  
Ruifeng Li ◽  
Peidong Liang

Purpose The global performance of industrial robots partly depends on the properties of drive system consisting of motor inertia, gearbox inertia, etc. This paper aims to deal with the problem of optimization of global dynamic performance for robotic drive system selected from available components. Design/methodology/approach Considering the performance specifications of drive system, an optimization model whose objective function is composed of working efficiency and natural frequency of robots is proposed. Meanwhile, constraints including the rated and peak torque of motor, lifetime of gearbox and light-weight were taken into account. Furthermore, the mapping relationship between discrete optimal design variables and component properties of drive system were presented. The optimization problem with mixed integer variables was solved by a mixed integer-laplace crossover power mutation algorithm. Findings The optimization results show that our optimization model and methods are applicable, and the performances are also greatly promoted without sacrificing any constraints of drive system. Besides, the model fits the overall performance well with respect to light-weight ratio, safety, cost reduction and others. Practical implications The proposed drive system optimization method has been used for a 4-DOF palletizing robot, which has been largely manufactured in a factory. Originality/value This paper focuses on how the simulation-based optimization can be used for the purpose of generating trade-offs between cost, performance and lifetime when designing robotic drive system. An applicable optimization model and method are proposed to handle the dynamic performance optimization problem of a drive system for industrial robot.


Author(s):  
Iman Kardan ◽  
Alireza Akbarzadeh ◽  
Ali Mousavi Mohammadi

Purpose This paper aims to increase the safety of the robots’ operation by developing a novel method for real-time implementation of velocity scaling and obstacle avoidance as the two widely accepted safety increasing concepts. Design/methodology/approach A fuzzy version of dynamic movement primitive (DMP) framework is proposed as a real-time trajectory generator with imbedded velocity scaling capability. Time constant of the DMP system is determined by a fuzzy system which makes decisions based on the distance from obstacle to the robot’s workspace and its velocity projection toward the workspace. Moreover, a combination of the DMP framework with a human-like steering mechanism and a novel configuration of virtual impedances is proposed for real-time obstacle avoidance. Findings The results confirm the effectiveness of the proposed method in real-time implementation of the velocity scaling and obstacle avoidance concepts in different cases of single and multiple stationary obstacles as well as moving obstacles. Practical implications As the provided experiments indicate, the proposed method can effectively increase the real-time safety of the robots’ operations. This is achieved by developing a simple method with low computational loads. Originality/value This paper proposes a novel method for real-time implementation of velocity scaling and obstacle avoidance concepts. This method eliminates the need for modification of original DMP formulation. The velocity scaling concept is implemented by using a fuzzy system to adjust the DMP’s time constant. Furthermore, the novel impedance configuration makes it possible to obtain a non-oscillatory convergence to the desired path, in all degrees of freedom.


Author(s):  
Guanghui Liu ◽  
Qiang Li ◽  
Lijin Fang ◽  
Bing Han ◽  
Hualiang Zhang

Purpose The purpose of this paper is to propose a new joint friction model, which can accurately model the real friction, especially in cases with sudden changes in the motion direction. The identification and sensor-less control algorithm are investigated to verify the validity of this model. Design/methodology/approach The proposed friction model is nonlinear and it considers the angular displacement and angular velocity of the joint as a secondary compensation for identification. In the present study, the authors design a pipeline – including a manually designed excitation trajectory, a weighted least squares algorithm for identifying the dynamic parameters and a hand guiding controller for the arm’s direct teaching. Findings Compared with the conventional joint friction model, the proposed method can effectively predict friction factors during the dynamic motion of the arm. Then friction parameters are quantitatively obtained and compared with the proposed friction model and the conventional friction model indirectly. It is found that the average root mean square error of predicted six joints in the proposed method decreases by more than 54%. The arm’s force control with the full torque using the estimated dynamic parameters is qualitatively studied. It is concluded that a light-weight industrial robot can be dragged smoothly by the hand guiding. Practical implications In the present study, a systematic pipeline is proposed for identifying and controlling an industrial arm. The whole procedure has been verified in a commercial six DOF industrial arm. Based on the conducted experiment, it is found that the proposed approach is more accurate in comparison with conventional methods. A hand-guiding demo also illustrates that the proposed approach can provide the industrial arm with the full torque compensation. This essential functionality is widely required in many industrial arms such as kinaesthetic teaching. Originality/value First, a new friction model is proposed. Based on this model, identifying the dynamic parameter is carried out to obtain a set of model parameters of an industrial arm. Finally, a smooth hand guiding control is demonstrated based on the proposed dynamic model.


Author(s):  
Qilong Yuan ◽  
I-Ming Chen ◽  
Teguh Santoso Lembono

Purpose Taping, covering objects with masking tapes, is a common process before conducting surface treatments such as plasma spraying and painting. Manual taping is tedious and takes a lot of effort of the workers. This paper aims to introduce an automatic agile robotic system and corresponding algorithm to do the surface taping. Design/methodology/approach The taping process is a special process which requires correct tape orientation and proper allocation of the masking tape for the coverage. This paper discusses on the design of the novel automatic system consisting of a robot manipulator, a rotating platform, a 3D scanner and a specially designed novel taping end-effectors. Meanwhile, the taping path planning to cover the region of interests is introduced. Findings Currently, cylindrical and freeform surfaces have been tested. With improvements on new sets of taping tools and more detailed taping method, taping of general surfaces can be conducted using such system in future. Originality/value The introduced taping path planning method is a novel method first talking about the mathematical model of the taping process. Such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to replace the work of human in such tedious and time-consuming works.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jinlei Zhuang ◽  
Ruifeng Li ◽  
Chuqing Cao ◽  
Yunfeng Gao ◽  
Ke Wang ◽  
...  

Purpose This paper aims to propose a measurement principle and a calibration method of measurement system integrated with serial robot and 3D camera to identify its parameters conveniently and achieve high measurement accuracy. Design/methodology/approach A stiffness and kinematic measurement principle of the integrated system is proposed, which considers the influence of robot weight and load weight on measurement accuracy. Then an error model is derived based on the principle that the coordinate of sphere center is invariant, which can simultaneously identify the parameters of joint stiffness, kinematic and hand-eye relationship. Further, considering the errors of the parameters to be calibrated and the measurement error of 3D camera, a method to generate calibration observation data is proposed to validate both calibration accuracy and parameter identification accuracy of calibration method. Findings Comparative simulations and experiments of conventional kinematic calibration method and the stiffness and kinematic calibration method proposed in this paper are conducted. The results of the simulations show that the proposed method is more accurate, and the identified values of angle parameters in modified Denavit and Hartenberg model are closer to their real values. Compared with the conventional calibration method in experiments, the proposed method decreases the maximum and mean errors by 19.9% and 13.4%, respectively. Originality/value A new measurement principle and a novel calibration method are proposed. The proposed method can simultaneously identify joint stiffness, kinematic and hand-eye parameters and obtain not only higher measurement accuracy but also higher parameter identification accuracy, which is suitable for on-site calibration.


Author(s):  
Yang Chuangui ◽  
Liu Xingbao ◽  
Yue Xiaobin ◽  
Mi Liang ◽  
Wang Junwen ◽  
...  

PurposeThis paper aims to solve the nonlinear problem in the uncertainty evaluation of the measurement of the positioning repeatability (RP) of industrial robots and provide guidance to restrict the uncertainty of measurement of RP (uRP).Design/methodology/approachFirstly, some uncertain sources existing in the measurement procedure of RP are identified. Secondly, the probability distribution function (PDF) of every source is established on the basis of its measurements. Some spatial combined normal distributions are adopted. Then, a method, based on Monte Carlo method (MCM) and established measurement model, is developed for the estimation ofuRP. Thirdly, some tests are developed for the identification and validation of the selected PDFs of uncertain sources. Afterwards, the proposed method is applied for the evaluation and validation of theuRP. Finally, influence analyses of some key factors are proposed for the quantification of their relative contributions touRP.FindingsResults show that the proposed method can reasonably and objectively estimate theuRPof the selected industrial robot, and changes of the industrial robots’ position and the laser trackers measurement are correlated. Additionally, theuRPof the selected industrial robot can be restricted by using the results of its key factors onuRP.Originality/valueThis paper proposes the spatial combined normal distribution to model the uncertainty of the repeatability of the laser tracker and industrial robot. Meanwhile, the proposed method and influence analyses can be used in estimating and restricting theuRPand thus useful in determining whether the RP of a tested industrial robot meets its requirements.


Sign in / Sign up

Export Citation Format

Share Document