Analytical approach of membrane-type acoustic metamaterial with ring masses

2018 ◽  
Vol 14 (5) ◽  
pp. 828-836 ◽  
Author(s):  
Hongyan Tian ◽  
Ding Tong ◽  
Yourui Tao

Purpose Membrane-type acoustic metamaterials (MAMs) recently have been emerged to display useful sound attenuation properties in a low-frequency regime. The purpose of this paper is to present an analytical approach to investigate the transmission loss (TL) of a square membrane-ring structure of MAM. The geometrical effects of ring mass on the TL peak and dip frequencies of the MAM are obtained and discussed. Design/methodology/approach In this paper, based on the wave propagation and vibration theory, considering the effects of ring mass and acoustic pressure on the membrane, an analytical model is presented to analyze acoustic response of MAM. Findings Multiple peak frequencies and wide bandwidth appear in the membrane-ring structure, and they can be tuned by changing the location or numbers of the ring mass on the membrane. It is a useful method for designing such type of metamaterial. Originality/value In this paper, an analytical method is presented to evaluate the effects of ring geometric on the TL performance of square membrane-type locally resonant metamaterial. It is proved that achieving broadband and multi-peak TL profile in a single cell can indeed happen by increasing additional ring mass. The TL and frequency bandwidth can be tuned by changing the location, adding numbers and varying mass distribution of the ring masses on the membrane.

2017 ◽  
Vol 31 (08) ◽  
pp. 1750049 ◽  
Author(s):  
Fang Wang ◽  
Tianning Chen ◽  
Xiaopeng Wang ◽  
Kai Bao ◽  
Lele Wan

Membrane-type acoustic metamaterials (MAMs) with negative dynamic mass have demonstrated the effects in the sound transmission loss (STL) at low-frequency range. This research aims to design a membrane-type acoustic metamaterial muffler (MAMM) based on the present MAMs, and to solve the problem that airflow cannot flow unimpededly in the channel once using the MAMs. For a better understanding of MAMM, the resonance frequency of the membrane was calculated and simulation was used to study the acoustic transmission performance of the MAMM. The simulation results were verified in comparison with the theoretical results of the membrane. This MAMM reduced the structural size of muffler compared with the traditional Helmholtz muffler and expand muffler, which can find application for the MAMs in acoustic absorption and noise control.


2021 ◽  
Vol 263 (1) ◽  
pp. 5869-5877
Author(s):  
Xiang Wu ◽  
TengLong Jiang ◽  
JianWang Shao ◽  
GuoMing Deng ◽  
Chang Jin

Membrane-type acoustic metamaterials are thin films or plates composed of periodic units with small additional mass. A large number of studies have shown that these metamaterials exhibit tunable anti-resonance, and their transmission loss values are much higher than the corresponding quality laws. At present, most researches on membrane-type acoustic metamaterials focus on the unit cell, and the sound insulation frequency band can only be adjusted by adjusting the structural parameters and material parameters. In this paper, two kinds of acoustic metamaterials with different structures are designed, which are the center placement of the mass and the eccentric placement of the mass.The two structures have different sound insulation characteristics. By designing different array combinations of acoustic metamaterials, the sound insulation peaks of different frequency bands are obtained. This paper studies the corresponding combination law, and effectively realizes the adjustable sound insulation frequency band.


2022 ◽  
Vol 188 ◽  
pp. 108586
Author(s):  
Tuo Xing ◽  
Xiaoling Gai ◽  
Junjuan Zhao ◽  
Xianhui Li ◽  
Zenong Cai ◽  
...  

2019 ◽  
Vol 15 (5) ◽  
pp. 1006-1015
Author(s):  
Mengna Cai ◽  
Hongyan Tian ◽  
Haitao Liu ◽  
Yanhui Qie

Purpose With the development of the modern technology and aerospace industry, the noise pollution is remarkably affecting people’s daily life and has been become a serious issue. Therefore, it is the most important task to develop efficient sound attenuation barriers, especially for the low-frequency audible range. However, low-frequency sound attenuation is usually difficult to achieve for the constraints of the conventional mass-density law of sound transmission. The traditional acoustic materials are reasonably effective at high frequency range. This paper aims to discuss this issue. Design/methodology/approach Membrane-type local resonant acoustic metamaterial is an ideal low-frequency sound insulation material for its structure is simple and lightweight. In this paper, the finite element method is used to study the low-frequency sound insulation performances of the coupled-membrane type acoustic metamaterial (CMAM). It consists of two identical tensioned circular membranes with fixed boundary. The upper membrane is decorated by a rigid platelet attached to the center. The sublayer membrane is attached with two weights, a central rigid platelet and a concentric ring with inner radius e. The influences of the distribution and number of the attached mass, also asymmetric structure on the acoustic attenuation characteristics of the CMAM, are discussed. Findings In this paper, the acoustic performance of asymmetric coupled-membrane metamaterial structure is discussed. The influences of mass number, the symmetric and asymmetry structure on the sound insulation performance are analyzed. It is shown that increasing the number of mass attached on membrane, structure exhibits low-frequency and multi-frequency acoustic insulation phenomenon. Compared with the symmetrical structure, asymmetric structure shows the characteristics of lightweight and multi-frequency sound insulation, and the sound insulation performance can be tuned by adjusting the distribution mode and location of mass blocks. Originality/value Membrane-type local resonant acoustic metamaterial is an ideal low-frequency sound insulation material for its structure is simple and lightweight. How to effectively broaden the acoustic attenuation band at low frequency is still a problem. But most of researchers focus on symmetric structures. In this study, the asymmetric coupled-membrane acoustic metamaterial structure is examined. It is demonstrated that the asymmetric structure has better sound insulation performances than symmetric structure.


2021 ◽  
Vol 263 (6) ◽  
pp. 508-518
Author(s):  
Frank Simon ◽  
R. Roncen ◽  
P. Vuillemin ◽  
P. Klotz ◽  
Fabien Méry ◽  
...  

In the context of aircraft noise reduction in varied applications where a cold or hot shear grazing flow is present (i.e., engine nacelle, combustion chamber, jet pump, landing gear), improved acoustic liner solutions are being sought. This is particularly true in the low-frequency regime, where space constraints limit the efficiency of conventional liner technology. Therefore, liner design must take into account the dimensional and phenomenological characteristics of constituent materials, assembly specifications and industrial requirements involving multiphysical phenomena. To perform the single/multi-objective optimization of complex meta-surface liner candidates, a software platform coined OPAL (OPtimisation of Acoustic Liners) was developed. Its first goal is to allow the user to assemble a large panel of parallel/serial elementary acoustic layers along a given duct. Then, the physical properties of this liner can be optimized, relatively to weighted objectives, for a given flow and frequency range: impedance target, maximum absorption coefficient or transmission loss with a total sample size and weight... The presentation will focus on the different elementary bricks and assembly of a problem (from 0D analytical coarse designs in order to reduce the parameter space, up to 2D plan or axisymmetric high-order Discontinuous Galerkin simulations of the Linearized Euler Equations).


2020 ◽  
Vol 159 ◽  
pp. 107078 ◽  
Author(s):  
Guojian Zhou ◽  
Jiu Hui Wu ◽  
Kuan Lu ◽  
Xiujie Tian ◽  
Wei Huang ◽  
...  

2019 ◽  
Vol 141 (4) ◽  
Author(s):  
William T. Edwards ◽  
Chia-Ming Chang ◽  
Geoffrey McKnight ◽  
Steven R. Nutt

As the importance of sound attenuation through weight-critical structures has grown and mass law based strategies have proven impractical, engineers have pursued alternative approaches for sound attenuation. Membrane-type acoustic metamaterials have demonstrated sound attenuation significantly higher than mass law predictions for narrow, tunable bandwidths. Similar phenomena can be achieved with plate-like structures. This paper presents an analytical model for the prediction of transmission loss through rectangular plates arbitrarily loaded with rigid masses, accommodating any combination of clamped and simply supported boundary conditions. Equations of motion are solved using a modal expansion approach, incorporating admissible eigenfunctions given by the natural mode shapes of single-span beams. The effective surface mass density is calculated and used to predict the transmission loss of low-frequency sound through the plate–mass structure. To validate the model, finite element results are compared against analytical predictions of modal behavior and shown to achieve agreement. The model is then used to explore the influence of various combinations of boundary conditions on the transmission loss properties of the structure, revealing that the symmetry of plate mounting conditions strongly affects transmission loss behavior and is a critical design parameter.


2016 ◽  
Vol 24 (02) ◽  
pp. 1650004 ◽  
Author(s):  
A. Mimani ◽  
M. L. Munjal

This work presents a semi-analytical technique based on the Green’s function and uniform-piston driven model to determine the end-correction length [Formula: see text] in an axially long flow-reversal end chamber muffler having an end-inlet and an end-outlet. The semi-analytical procedure is based on the 3D analytical uniform piston-driven model for obtaining the impedance [Z] matrix parameters and numerically evaluating the frequency [Formula: see text] at which the imaginary part of the cross-impedance parameter [Formula: see text] crosses the frequency axis at the first instance. The frequency [Formula: see text] corresponds to the low-frequency peak in the transmission loss (TL) spectrum of the axially long flow-reversal end-chamber muffler obtained a priori to its computation by considering the influence of higher order evanescent transverse modes. The effective chamber length (and thence, the end-correction length) in the low-frequency range are determined by using the expression for resonance frequency of a classical quarter-wave resonator. This method is employed to determine the end-correction in axially long elliptical cylindrical end chambers and circular cylindrical end chambers (with or without a rigid concentric circular pass-tube). The TL graph predicted by the 1D axial plane wave model (incorporating the end-correction length) is shown to be in an excellent agreement with that obtained by the 3D analytical approach and an experimental result (from literature) up to the low-frequency limit, thereby validating the semi-analytical technique. Parametric studies are conducted using the proposed semi-analytical method to investigate and qualitatively explain the effect of angular location and offset distance of the end ports and the pass-tube diameter on the end-correction length, thereby yielding important insights into the influence of transverse evanescent modes on dominant axial plane wave modes of the axially long end-chamber. Development of an empirical end-correction expression in a flow-reversal circular end-chamber with offset inlet and outlet ports is a practically useful contribution of this work.


2011 ◽  
Vol 110 (12) ◽  
pp. 124903 ◽  
Author(s):  
Christina J. Naify ◽  
Chia-Ming Chang ◽  
Geoffrey McKnight ◽  
Steven Nutt

Sign in / Sign up

Export Citation Format

Share Document