Effects of rotation, voids and diffusion on characteristics of plane waves in a thermoelastic material

2019 ◽  
Vol 16 (1) ◽  
pp. 73-92
Author(s):  
Baljeet Singh ◽  
Himanshu Singla

Purpose The purpose of this paper is to study the effects of rotation, voids and diffusion on characteristics of plane waves in a thermoelastic material. Design/methodology/approach Lord and Shulman generalization of linear thermoelasticity is used to study the plane waves in a rotating thermoelastic material with voids and diffusion. The thermoelastic solid is rotating with a uniform angular velocity. The problem is specialized in two dimensions to study wave propagation. The plane harmonic solutions of governing field equations in a plane are obtained. Findings A velocity equation is obtained which indicates the propagation of five coupled plane waves in the medium. Reflection of an incident plane wave from stress-free surface of a half-space is also considered to obtain the amplitude ratios of various reflected waves. A numerical example is considered to illustrate graphically the effects of rotation, frequency, void and diffusion parameters on speeds and amplitude ratios of plane waves. Originality/value The present problem covers the combined effects of rotation, voids and diffusion on characteristics of plane waves in linear thermoelastic material in the context of Lord and Shulman (1967) and Aouadi (2010) theories, which are not studied in literature yet.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Devender Sheoran ◽  
Ramesh Kumar ◽  
Sunil Kumar ◽  
Kapil Kumar Kalkal

Purpose The purpose of this paper is to study the reflection of plane waves in an initially stressed rotating thermoelastic diffusive medium with micro-concentrations and two-temperature. Design/methodology/approach A two-dimensional model of generalized thermoelasticity is considered. The governing equations are transformed into the non-dimensional forms using the dimensionless variables. Then, potential functions are introduced for the decoupling of the waves. Further, appropriate boundary conditions are assumed to completely solve the problem. Finally, numerical computations are performed using MATLAB. Findings The problem is solved analytically and it is found that there exist five coupled waves in addition to an independent micro-concentration wave in the considered medium. The amplitude ratios and energy ratios of these reflected waves have also been computed numerically for a specific material. Originality/value The modulus values of amplitude ratios are presented graphically to exhibit the effects of angular velocity, initial stress, two-temperature, diffusion and micro-concentration parameters. The expressions of energy ratios obtained in explicit form are also depicted graphically as functions of angle of incidence. The law of conservation of energy at the free surface during reflection phenomenon is also verified.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Rajneesh Kumar ◽  
K. D. Sharma ◽  
S. K. Garg

The reflection of plane waves at the free surface of thermally conducting micropolar elastic medium with two temperatures is studied. The theory of thermoelasticity with and without energy dissipation is used to investigate the problem. The expressions for amplitudes ratios of reflected waves at different angles of incident wave are obtained. Dissipation of energy and two-temperature effects on these amplitude ratios with angle of incidence are depicted graphically. Some special and particular cases are also deduced.


1962 ◽  
Vol 52 (3) ◽  
pp. 595-625 ◽  
Author(s):  
H. Deresiewicz ◽  
J. T. Rice

abstract A general solution is derived of Biot's field equations governing small motions of a porous solid saturated with a viscous liquid. The solution is then employed to study some of the phenomena attendant upon the reflection from a plane, traction-free boundary of each of the three body waves predicted by the equations. The problem, though more complex, bears some similarity to that of electromagnetic waves in a conducting medium, in that some of the reflected waves are inhomogeneous, planes of constant amplitude not coinciding with planes of constant phase. Analytical expressions are displayed for the phase velocities, attenuation coefficients, angles of reflection and the amplitude ratios, and explicit formulas are given for the limiting cases of low and high frequencies, representing first-order corrections for porosity of the solid and viscosity of the liquid, respectively. The paper concludes with a presentation of results of numerical calculations pertinent to a kerosene-saturated sandstone.


2016 ◽  
Vol 12 (2) ◽  
pp. 326-344 ◽  
Author(s):  
Mohamed Ibrahim A Othman ◽  
Mohamed I. M. Hilal

Purpose – The purpose of this paper is to investigate the influence of the gravity and the magnetic fields on the plane waves in a homogenous, linear and isotropic thermoelastic medium subjected to the laser pulse heating. Design/methodology/approach – The problem has been solved analytically and numerically by using the normal mode analysis. Findings – Numerical results for the temperature, the displacement components, the stress components and the volume fraction were presented graphically and analyzed the results. The graphical results indicate that the effect of gravity and magnetic fields are observable physical effects on the porous thermoelastic material heated by a laser pulse. Comparisons are made with the results in the absence and presence of the gravity and the magnetic fields, also at various times. Originality/value – In the present work, the authors shall formulate a 2-D problem for the propagation of plane waves on the porous thermoelastic material influenced by the gravity and the magnetic fields subjected to a laser pulse heating act as a thermal shock. A comparison is also made between the two types II and III of Green-Naghdi theory in the absence and the presence of the gravity and the magnetic fields. Such problems are very important in many dynamical systems.


2016 ◽  
Vol 12 (4) ◽  
pp. 748-778 ◽  
Author(s):  
Rajneesh Kumar ◽  
Richa Vohra ◽  
M.G. Gorla

Purpose The purpose of this paper is to study the reflection of plane waves in thermoelastic medium with double porosity structure. Design/methodology/approach A two-dimensional model is considered of an isotropic thermoelastic half-space with double porosity. Thermoelasticity with one relaxation time given by Lord and Shulman (1967) has been used to study the problem. It is found that there exists four coupled longitudinal waves, namely, longitudinal wave (P), longitudinal thermal wave (T), longitudinal volume fractional wave corresponding to pores (PVI) and longitudinal volume fractional wave corresponding to fissures (PVII), in addition to an uncoupled transverse wave (SV). Findings The formulae for amplitude ratios of various reflected waves are obtained in closed form. It is found that these amplitude ratios are functions of angle of incidence. Effect of porosity and thermal relaxation time is shown graphically on the amplitude ratios with angle of incidence for a particular model. Originality/value Reflection of plane waves is of great practical importance. There are many organic and inorganic deposits beneath the earth surface. Wave propagation is the simplest and most economical technique to detect these. The model discussed in the present paper can provide useful information for experimental researchers working in the field of geophysics and earthquake engineering, along with seismologist working in the field of mining tremors and drilling into the crust of the earth.


2020 ◽  
Vol 22 (4) ◽  
pp. 1483-1496
Author(s):  
Baljeet Singh

AbstractA phenomenon of reflection of plane waves from a thermally insulated surface of a solid half-space is studied in context of Lord-Shulman theory of generalized thermo-viscoelasticity with voids. The governing equations of generalized thermo-viscoelastic medium with voids are specialized in x–z plane. The plane wave solution of these equations shows the existence of three coupled longitudinal waves and a shear vertical wave in a generalized thermo-viscoelastic medium with voids. For incident plane wave (longitudinal or shear), three coupled longitudinal waves and a shear vertical wave reflect back in the medium. The mechanical boundary conditions at free surface of solid half-space are considered as impedance boundary conditions, in which the shear force tractions are assumed to vary linearly with the tangential displacement components multiplied by the frequency. The impedance corresponds to the constant of proportionality. The appropriate potentials of incident and reflected waves in the half-space will satisfy the required impedance boundary conditions. A non-homogeneous system of four equations in the amplitude ratios of reflected waves is obtained. These amplitude ratios are functions of material parameters, impedance parameter, angle of incidence, thermal relaxation and speeds of plane waves. Using relevant material parameters for medium, the amplitude ratios are computed numerically and plotted against certain ranges of impedance parameter and the angle of incidence.


2021 ◽  
Vol 26 (4) ◽  
pp. 99-112
Author(s):  
Sachin Kaushal ◽  
Rajneesh Kumar ◽  
Kulwinder Parmar

Abstract The aim of the present paper is to study the impact of diffusion and impedance parameters on the propagation of plane waves in a thermoelastic medium for Green and Lindsay theory (G-L) and the Coupled theory (C-T) of thermoelasticity. Results are demonstrated for impedance boundary conditions and the amplitude ratios of various reflected waves against the angle of incidence are calculated numerically. The characteristics of diffusion, relaxation time and impedence parameter on amplitude ratios have been depicted graphically. Some cases of interest are also derived from the present investigation.


2020 ◽  
Vol 8 (1) ◽  
pp. 58-62
Author(s):  
C. Zorammuana ◽  
◽  
Lalawmpuia Tochhawng ◽  
S.S. Singh ◽  
◽  
...  

This paper investigates the problem of incident and reflected shear waves in an incompressible thermoelastic material having transversely isotropic property using Lord-Shulman theory on generalized thermoelasticity. Two plane shear waves are shown to exist in such medium and the expressions for non-dimensional velocities are given. The amplitude ratios of the reflected waves caused by the incident wave at the stress free surface have been derived by taking suitable boundary conditions. The effect of specific heat and material constants on the amplitude ratios has been analysed numerically and the results are presented graphically.


2020 ◽  
Vol 22 (4) ◽  
pp. 939-958
Author(s):  
Indrajit Roy ◽  
D. P. Acharya ◽  
Sourav Acharya

AbstractThe present paper investigates the propagation of quasi longitudinal (qLD) and quasi transverse (qTD) waves in a magneto elastic fibre-reinforced rotating semi-infinite medium. Reflections of waves from the flat boundary with surface stress have been studied in details. The governing equations have been used to obtain the polynomial characteristic equation from which qLD and qTD wave velocities are found. It is observed that both the wave velocities depend upon the incident angle. After imposing the appropriate boundary conditions including surface stress the resultant amplitude ratios for the total displacements have been obtained. Numerically simulated results have been depicted graphically by displaying two and three dimensional graphs to highlight the influence of magnetic field, rotation, surface stress and fibre-reinforcing nature of the material medium on the propagation and reflection of plane waves.


Sign in / Sign up

Export Citation Format

Share Document