Performance of anode materials in electrochemical treatment system for indigo dyeing wastewater

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wei Zhang ◽  
Mengdi Zhang ◽  
Zhijie Huangfu ◽  
Jiming Yao ◽  
Yuan Xie

Purpose This study aims to explore suitable anode materials used in the electrochemical system for indigo dyeing wastewater, to achieve optimal treatment performances. Design/methodology/approach The single factor experiment was used to explore the optimum process parameters for electrochemical decolorization of indigo dyeing wastewater by changing the applied voltage, electrolysis time and electrolyte concentration. At the voltage of 9 V, the morphology of flocs with different electrolytic times was observed and the effect of electrolyte concentration on decolorization rate in two electrolyte systems was also investigated. Further analysis of chemical oxygen demand (COD) removal rate, anode weight loss and sediment quantity after electrochemical treatment of indigo dyeing wastewater were carried out. Findings Comprehensive considering the decolorization degree and COD removal rate of the wastewater, the aluminum electrode showed the best treatment effect among several common anode materials. With aluminum electrode as an anode, under conditions of applied voltage of 9 V, electrolysis time of 40 min and sodium sulfate concentration of 6 g/L, the decolorization percentage obtained was of 94.59% and the COD removal rate reached at 84.53%. Research limitations/implications In the electrochemical treatment of indigo dyeing wastewater, the aluminum electrode was found as an ideal anode material, which provided a reference for the choice of anodes. The electrodes used in this study were homogenous material and the composite material anode needed to be further researched. Practical implications It provided an effective and practical anode material choice for electrochemical degradation of indigo dyeing wastewater. Originality/value Combined with the influence of applied voltage, electrolysis time and electrolyte concentration and anode materials on decolorization degree and COD removal rate of indigo dyeing wastewater, providing a better electrochemical treatment system for dyehouse effluent.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Weiwei Lv ◽  
Zhijie Huangfu ◽  
Kangkang Wang ◽  
Wei Zhang ◽  
Jiming Yao

Purpose Indirect electrochemical oxidation and electro-flocculation were combined to degrade indigo wastewater. Design/methodology/approach The degradation efficiency of indigo wastewater in single-cell and double-cell were investigated. Based on the previous single factor experiments, the oxidative degradation conditions of indigo wastewater in single cell were optimized by response surface methodology (RSM). The decolorization rate, chemical oxygen demand (COD) removal rate, the contents of flocculation precipitation and indigo were measured and analyzed. Findings The degradation efficiency in single cell was higher than in double cell. The electrolysis conditions were optimized by RSM and the decolorization rate was 99.01% with COD removal rate of 60.34% and conductivity of 89.75 mS/cm. The amount of flocculated precipitation decreased by 53.33% and the indigo increased by 86.34%. The content of Na and S decreased by 12.13 and 6.49%, respectively. The ratio of Fe3+ to Fe2+ in the solution was 4.62:1, indicating that most of the iron dropped on the electrode sheet was converted to Fe3+. Research limitations/implications The one-step electrochemical oxidation and flocculation method with the advantages of simple operation and environmental protection, provided a reference for the actual treatment of dyeing wastewater. Practical implications Combining the electrochemical flocculation and oxidation provided an efficient and practical solution for degradation of indigo wastewater. Originality/value Combining the advantages of electrochemical oxidation and electroflocculation, the application of electrochemistry in printing and dyeing wastewater treatment technology has been expanded.


2019 ◽  
Vol 125 ◽  
pp. 03008
Author(s):  
Rachmad Ardhianto ◽  
Arseto Yekti Bagastyo

Personal care wastewater contains pharmaceuticals and personal care products (PPCPs). The compounds were in organic pollutants which have to be treated before water can be discharged. Electrochemical processes such as electro-coagulation and electro-oxidation were used to remove non-biodegradable in wastewater. Electro-coagulation as pretreatment using aluminum electrodes as anode and cathode. Electro-oxidation using Ti/Pt, and Ti/IrO2 as anode electrodes and variation of current 0,6 A, 0,7 A, 0,8 A and 1,0 A. Aluminum electrodes has effectiveness in removing COD, and TSS in electrocoagulation. Using aluminum electrodes remove COD, and TSS 76.1% (5.41 g) and 90.3% (6.10 g). Under initial pH, aluminum electrode does not cause a change in pH from initial pH (4.8-4.9). The removal efficiency of electrooxidation process using aluminum electrocoagulation effluent COD using Ti/Pt and Ti/IrO2 were 34,30% (1,55 g) and 39,71% (1,80 g). Increasing current when using Ti/IrO2 causes the COD removal rate to be more effective than using Ti/Pt. removal COD with 1.0 A gave the optimum COD removal were 34,30% (2,3 Ah/L; 1,55 g) with Ti/Pt, and 39,71% (2,3 Ah/L; 1,80 g) with Ti/IrO2 compared to 0,6 A (1,4 Ah/L), 0,7 A (1,6 Ah/L), and 0.8 A (1,9 Ah/L).


2014 ◽  
Vol 1048 ◽  
pp. 503-506
Author(s):  
Hui Xia Lan ◽  
Ping Ma ◽  
Jian Zhang ◽  
Hui Jie Li ◽  
Heng Zhang ◽  
...  

The composition of dyeing wastewater is complicated, after biochemical treatment, the effluent COD is still unable to meet the emission standard. To achieve discharge standard that often require advanced treatment after biochemical. This paper investigated effect of pH, reaction time, ZnO dosage, dosage of H2O2on the effect of dyeing wastewater treatment by photocatalytic-H2O2, the results showed that the reaction time of 15 min, pH of 4, dosage of ZnO was 4 g/L, 30% H2O2dosage was 1 ml/L, the COD removal rate was highest, can reach more than 55%.


2018 ◽  
Vol 2017 (3) ◽  
pp. 707-717 ◽  
Author(s):  
Yan Wang ◽  
Xianwei Wu ◽  
Ju Yi ◽  
Lijun Chen ◽  
Tianxiang Lan ◽  
...  

Abstract A novel iron-carbon (Fe/C) micro-electrolysis combined with H2O2 (ICMH) process was proposed to pretreat the printing and dyeing wastewater (PDW), using a micro-electrolysis filling. The effects of H2O2 concentration, reaction time, initial pH, and Fe/C dosage on chemical oxygen demand (COD) removal rate of PDW were optimized by response surface methodology (RSM). The maximum COD removal rate was approximately 77.65% after 186 min treatment, when the concentration of H2O2, initial pH and the dosage of Fe/C were 8.88 g/L, 1.5 and 837 g/L, respectively. Analysis of variance (ANOVA) showed a high coefficient of determination value (R2 = 0.9780). And H2O2 concentration and initial pH were the key factors to improve the treatment effect. UV-Vis spectra indicated that a significant blue shift at 220 nm, attributing that fused aromatic hydrocarbons were degraded effectively. 3D-EEM spectra analysis showed that the water samples of PDW mainly contained three kinds of organic matter: refractory fulvic acid, soluble microbial metabolites and aromatic proteins, and the degradation rate of these was 81.76%, 53.78% and 70.83%, respectively.


2012 ◽  
Vol 518-523 ◽  
pp. 2745-2748
Author(s):  
Ling Yan Ren ◽  
Gang Xu

The paper adopted Coagulation-Fenton Oxidation Method on treating the wastewater of 6-nitro-1,2 diazonium oxygroup naphthalene-4-sulfoacid production process (i.e. 6-nitry wastewater), introduced the treatment effect of the combined technology used on 6-nitry wastewater, and studied the factors influencing the treatment effect, to determine the reasonable parameters of the technology on treating 6-nitry wastewater. The results showed that Using polyaluminium chloride (mass fraction 2%) as flocculant for treating 6-nitry wastewater, the COD removal rate reached up to 48.7%; Making Fenton reagent oxidation treatment on coagulation yielding water, under the best conditions for solution acidity controlled at pH3 or so, in the 100 mL wastewater, 30% hydrogen peroxide was 5.0 mL, 0.5 mol/L ferrous sulfate solution was 4.0 mL, reaction time was 60 min, the COD removal rate could reach 98% or more.


2013 ◽  
Vol 726-731 ◽  
pp. 2316-2319
Author(s):  
Hai Xia Duan

TNT-RDX wastewater is hard to biodegrade and highly toxic. The self-made reactor was used to degrade the wastewater, spray and the conditions of droplet diameter, number of nozzle, spray height were clearly observed. The results show that the average COD removal rate of TNT-RDX wastewater was 69.6%.The spray conditions can improve the dispersion of the wastewater and increase the use of the residual ozone in gas phase. Keywords: Spray; TNT-RDX wastewater; ozone; UV; GAC


2019 ◽  
Vol 38 (3) ◽  
pp. 243
Author(s):  
Happy Mulyani ◽  
Gregorius Prima Indra Budianto ◽  
Margono Margono ◽  
Mujtahid Kaavessina

Industrial wastewater treatment using Sequencing Batch Reactor (SBR) can improve effluent quality at lower cost than that obtained by other biological treatment methods. Further optimization is still required to enhance effluent quality until it meets standard quality and to reduce the operating cost of treatment of high strength organic wastewater. The purpose of this research was to determine the effect of pretreatment (pH adjustment and prechlorination) and aeration time on effluent quality and COD removal rate in tapioca wastewater treatment using SBR. Pretreatment was done by (1) adjustment of tapioca wastewater pH to control (4.92), 7, and 8, and (2) tapioca wastewater prechlorination at pH 8 during hour using calcium hypochlorite in variation dosages 0, 2, 4, 6 mg/L Cl2, SBR operation was conducted according to following steps: (1) Filling of pre-treated wastewater into a bioreactor during 1 hour, and (2) aeration of the mixture of tapioca wastewater and activated sludge during 8 hours. Effluent sample was collected at every 2-hours aeration for COD analysis. COD removal rate mathematical formula was got by first deriving the best fit function between aeration time and COD. Optimum aeration time resulting in no COD removal rate. The value of COD effluent and its removal rate in optimum aeration time was used to determine the recommended of operation condition of pretreatment. Research result shows that chosen pH operation condition is pH 8. Prechorination can make effluent quality which meets standard quality and highest COD removal rate. The chosen Cl2 dosage is 6 mg/L.


2014 ◽  
Vol 1044-1045 ◽  
pp. 215-218
Author(s):  
Xian Huan Qiu ◽  
Hai Yu ◽  
Peng Fei Deng

In the presence of acetic acid, the effects of pH, processing time, addition of Fe2+ and H2O2 on dye wastewater treatment were studied. Experimental results showed that in the presence of acetic acid, when the pH value was 4, the processing time was 30.0min, addition of ferrous sulfate was 4.8g/L, and addition of hydrogen peroxide was 56mL/L, the treatment effect was the best, COD removal rate reached 51.0%. Further studied of the effect of the presence of acetic acid on Fenton’s oxidation of dye wastewater, the results showed that without of acetic acid, the COD removal rate was higher than that with acetic acid. And the effect of Fenton's reagent on oxidation of dye substances was interfered by the presence of acetic acid.


2010 ◽  
Vol 62 (6) ◽  
pp. 1379-1385 ◽  
Author(s):  
Lin Song ◽  
Jiang Wenju ◽  
Tang Qiong ◽  
Li Yaozhong

This study investigated the effects of 2,4-dichlorophenol on reduction of activated sludge in membrane bioreactors. Significant inhibition on sludge growth and slight reduction in COD removal were observed at higher 2,4-dichlorophenol dosages. The deviation between relative specific COD removal rate (q/q0) and relative specific growth rate (μ/μ0) suggested that a minimum 2,4-dichlorophenol concentration was required for uncoupling of anabolism and catabolism. With the increase of the dosage of 2,4-dichlorophenol, stepwise improvement of biomass bioactivity and the reduction in activated sludge production were achieved simultaneously. Compared with the control bioreactor, the peak distribution of floc size in the 2,4-dichlorophenol added bioreactor shifted to a range of smaller floc size. Besides, addition of 2,4-dichlorophenol caused little variation of microorganism community structure and SVI value of the sludge. After 24-hour operation, the residue 2,4-dichlorophenol concentration in the bioreactors was reduced to a negligible level.


2020 ◽  
Vol 49 (1) ◽  
pp. 46-54 ◽  
Author(s):  
Wei Zhang ◽  
Weiwei Lv ◽  
Xiaoyan Li ◽  
Jiming Yao

Purpose In this study, the oxidative degradation performance of indigo wastewater based on electrochemical systems was explored. The decolourization degrees, removal rate of chemical oxygen demand and biochemical oxygen demand of the indigo wastewater after degradation were evaluated and optimized treatment conditions being obtained. Design/methodology/approach The single factor method was first used to select the electrolyte system and electrode materials. Then the response surface analysis based on Box–Behnken Design was chosen to determine the influence of four independent variables such as FeCl3 concentration, NaCl concentration, decolourization time and voltage on the degradation efficiency. Findings On the basis of single factor experiment, the electrode material of stainless steel was selected in the double cell, and the indigo wastewater was electrolyzed with FeCl3 and NaCl electrolytes. The process conditions of electrochemical degradation of indigo wastewater were optimized by response surface analysis: the concentration of FeCl3 and NaCl was of 16 and 9 g/L, respectively, with a decolourization time of 50 min, voltage of 10 V and decolourization percentage of 98.94. The maximum removal rate of chemical oxygen demand reached 75.46 per cent. The highest ratio of B/C was 3.77, which was considered to be more biodegradable. Research limitations/implications Dyeing wastewater is bringing out more and more pollution problems to the environment. However, there are some shortcomings in traditional technologies such as adsorption and filtration. As a kind of efficient and clean water treatment technology, electrochemical oxidation has been applied to the treatments of various types of wastewater. The decolourization and degradation of indigo wastewater is taken as an example to provide reference for the treatment of wastewater in actual plants. Practical implications The developed method provided a simple and practical solution for efficiently degrading indigo wastewater. Originality/value The method for the electrochemical oxidation technology was novel and could find numerous applications in the degradation of printing and dyeing wastewater.


Sign in / Sign up

Export Citation Format

Share Document