Evaluation of mechanical and thermal properties of fabricated Sansevieria and Kaans fiber/Egg shell powder reinforced with polyester matrices

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajkumar Devapiriam ◽  
Karthik S. ◽  
Santhy K.

Purpose The purpose of this study is to fabricate and compare the mechanical and thermal properties of Sansevieria and Kaans fiber reinforced polyester matrices composites. Design/methodology/approach Treated Sansevieria and Kaans fiber was used as reinforcement for the fabrication of polymer matrix composites. Kaans fiber, which was available plenty in the delta region, but physical and mechanical properties of Kaans fiber were low when it compared with Sansevieria fiber. To make use of Kaans fiber for the fabrication of composite, the physical and mechanical properties have to be enhanced. So Egg shell powder was selected as a filler material to enhance the Kaans fiber reinforced composite. The selected fibers were properly weaved after alkali treatment. A three-layered (0°/45°/0°) Sansevieria fiber reinforced polymer (S-FRP) and Kaans fiber reinforced polymer (K-FRP) composite plates were fabricated using the compression molding method. As per American Society for Testing and Materials standards, the specimens were cut and mechanical, thermal and absorption properties of Sansevieria and Kaans fiber composites were investigated experimentally. Findings Tensile and flexural test reveals that K-FRP composite has good ductility and bending property than S-FRP composite plate. But from the other test results, S-FRP possesses high elongation capability than K-FRP. Thermo gravimetric analysis, moisture absorption and swelling test too done which clearly appeared S-FRP composite plate has prevalent execution than K-FRP composite plate. Originality/value This original research study enlists the mechanical, thermal properties and absorption properties of fabricated S-FRP and K-FRP composite plates.

2021 ◽  
Vol 5 (1) ◽  
pp. 33
Author(s):  
Farzin Azimpour-Shishevan ◽  
Hamit Akbulut ◽  
M.A. Mohtadi-Bonab

In the current research, the effect of cyclic temperature variation on the mechanical and thermal properties of woven carbon-fiber-reinforced polymer (CFRP) composites was investigated. To this, carbon fiber textiles in twill 2/2 pattern were used as reinforced phase in epoxy, and CFRPs were fabricated by vacuum-assisted resin-infusion molding (VARIM) method. Thermal cycling process was carried out between −40 and +120 °C for 20, 40, 60 and 80 cycles, in order to evaluate the effect of thermal cycling on mechanical and thermal properties of CFRP specimens. In this regard, tensile, bending and short beam shear (SBS) experiments were carried out, to obtain modulus of elasticity, tensile strength, flexural modulus, flexural strength and inter-laminar shear strength (ILSS) at room temperature (RT), and then thermal treated composites were compared. A dynamic mechanical analysis (DMA) test was carried out to obtain thermal properties, and viscoelastic properties, such as storage modulus (E’), loss modulus (E”) and loss factors (tan δ), were evaluated. It was observed that the characteristics of composites were affected by thermal cycling due to post-curing at a high temperature. This process worked to crosslink and improve the composite behavior or degrade it due to the different coefficients of thermal expansion (CTEs) of composite components. The response of composites to the thermal cycling process was determined by the interaction of these phenomena. Based on SEM observations, the delamination, fiber pull-out and bundle breakage were the dominant fracture modes in tensile-tested specimens.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 754
Author(s):  
Jantrawan Pumchusak ◽  
Nonthawat Thajina ◽  
Watcharakorn Keawsujai ◽  
Pattarakamon Chaiwan

This work aims to explore the effect of organo-modified montmorillonite nanoclay (O-MMT) on the mechanical, thermo-mechanical, and thermal properties of carbon fiber-reinforced phenolic composites (CFRP). CFRP at variable O-MMT contents (from 0 to 2.5 wt%) were prepared. The addition of 1.5 wt% O-MMT was found to give the heat resistant polymer composite optimum properties. Compared to the CFRP, the CFRP with 1.5 wt% O-MMT provided a higher tensile strength of 64 MPa (+20%), higher impact strength of 49 kJ/m2 (+51%), but a little lower bending strength of 162 MPa (−1%). The composite showed a 64% higher storage modulus at 30 °C of 6.4 GPa. It also could reserve its high modulus up to 145 °C. Moreover, it had a higher heat deflection temperature of 152 °C (+1%) and a higher thermal degradation temperature of 630 °C. This composite could maintain its mechanical properties at high temperature and was a good candidate for heat resistant material.


Sign in / Sign up

Export Citation Format

Share Document