Hydraulic manifold design via additive manufacturing optimized with CFD and fluid-structure interaction simulations

2019 ◽  
Vol 25 (9) ◽  
pp. 1516-1524 ◽  
Author(s):  
Aiman A. Alshare ◽  
Fedrico Calzone ◽  
Maurizio Muzzupappa

Purpose The purpose of this study is to investigate the feasibility of using additive manufacturing (AM) technique to produce an efficient valve manifold for hydraulic actuator by redesigning valve blocks produced by conventional methods. Design/methodology/approach A priori, a computational fluid dynamics (CFD) analysis was carried out using the software ANSYS Fluent to determine the optimal flow path that results in least pressure drop, highest average velocity and least energy losses. Fluid–structure interaction (FSI) simulations, processed with imported pressure distribution from the CFD, were conducted to determine the resulting loading and deformations of the manifold assembly. Findings The new design offers a 23 per cent reduction of oil volume in the circuit, while weighing 84 per cent less. When using the new design, a decrease of pressure drop by nearly 25 per cent and an increase in the average velocity by 2.5 per cent is achieved. A good agreement, within 16 per cent, is found in terms of the pressure drop between the experiment and computational model. Originality/value It is possible to build an efficient hydraulic manifold design by iterative refinement for adequate production via selective laser melting (SLM) and minimize used material to circumventing building support structures in non-machinable features of the manifold.

2021 ◽  
Vol 31 (5) ◽  
pp. 1373-1395
Author(s):  
Iman Mazinani ◽  
Mohammad Mohsen Sarafraz ◽  
Zubaidah Ismail ◽  
Ahmad Mustafa Hashim ◽  
Mohammad Reza Safaei ◽  
...  

Purpose Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges. Thus, experimental tests in a wave flume and a fluid structure interaction (FSI) analysis were constructed to gain insight into tsunami bore force on coastal bridges. Design/methodology/approach Various wave heights and shallow water were used in the experiments and computational process. A 1:40 scaled concrete bridge model was placed in mild beach profile similar to a 24 × 1.5 × 2 m wave flume for the experimental investigation. An Arbitrary Lagrange Euler formulation for the propagation of tsunami solitary and bore waves by an FSI package of LS-DYNA on high-performance computing system was used to evaluate the experimental results. Findings The excellent agreement between experiments and computational simulation is shown in results. The results showed that the fully coupled FSI models could capture the tsunami wave force accurately for all ranges of wave heights and shallow depths. The effects of the overturning moment, horizontal, uplift and impact forces on a pier and deck of the bridge were evaluated in this research. Originality/value Photos and videos captured during the Indian Ocean tsunami in 2004 and the 2011 Japan tsunami showed solitary tsunami waves breaking offshore, along with an extremely turbulent tsunami-induced bore propagating toward shore with significantly higher velocity. Consequently, the outcomes of this current experimental and numerical study are highly relevant to the evaluation of tsunami bore forces on the coastal, over sea or river bridges. These experiments assessed tsunami wave forces on deck pier showing the complete response of the coastal bridge over water.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mustafa Serdar Genç ◽  
Hacımurat Demir ◽  
Mustafa Özden ◽  
Tuna Murat Bodur

Purpose The purpose of this exhaustive experimental study is to investigate the fluid-structure interaction in the flexible membrane wings over a range of angles of attack for various Reynolds numbers. Design/methodology/approach In this paper, an experimental study on fluid-structure interaction of flexible membrane wings was presented at Reynolds numbers of 2.5 × 104, 5 × 104 and 7.5 × 104. In the experimental studies, flow visualization, velocity and deformation measurements for flexible membrane wings were performed by the smoke-wire technique, multichannel constant temperature anemometer and digital image correlation system, respectively. All experimental results were combined and fluid-structure interaction was discussed. Findings In the flexible wings with the higher aspect ratio, higher vibration modes were noticed because the leading-edge separation was dominant at lower angles of attack. As both Reynolds number and the aspect ratio increased, the maximum membrane deformations increased and the vibrations became visible, secondary vibration modes were observed with growing the leading-edge vortices at moderate angles of attack. Moreover, in the graphs of the spectral analysis of the membrane displacement and the velocity; the dominant frequencies coincided because of the interaction of the flow over the wings and the membrane deformations. Originality/value Unlike available literature, obtained results were presented comparatively using the sketches of the smoke-wire photographs with deformation measurement or turbulence statistics from the velocity measurements. In this study, fluid-structure interaction and leading-edge vortices of membrane wings were investigated in detail with increasing both Reynolds number and the aspect ratio.


2016 ◽  
Vol 33 (8) ◽  
pp. 2504-2529 ◽  
Author(s):  
Babak Lotfi ◽  
Bengt Sunden ◽  
Qiu-Wang Wang

Purpose The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field® solver. Design/methodology/approach A three-dimensional FSI approach is proposed in this paper to provide better understanding of the performance of the VG structures in SWFET heat exchangers associated with the alloy material properties and geometric factors. The Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are applied for modeling of the turbulent flow in SWFET heat exchanger and the linear elastic Cauchy-Navier model is solved for the structural von Mises stress and elastic strain analysis in the VGs region. Findings Parametric studies conducted in the course of this research successfully identified illustrate that the maximum magnitude of von Mises stress and elastic strain occurs at the root of the VGs and depends on geometrical parameters and material types. These results reveal that the titanium alloy VGs shows a slightly higher strength and lower elastic strain compared to the aluminum alloy VGs. Originality/value This paper is one of the first in the literature that provides original information mechanical behavior of a SWFET heat exchanger model with new VGs in the field of FSI coupling technique.


Author(s):  
A. Castorrini ◽  
V. F. Barnabei ◽  
A. Corsini ◽  
F. Rispoli

Abstract Additive manufacturing represents a new frontier in the design and production of rotor machines. This technology drives the engineering research framework to new possibilities of design and testing of new prototypes, reducing costs and time. On the other hand, the fast additive manufacturing implies the use of plastic and light materials (as PLA or ABS), often including a certain level of anisotropy due to the layered deposition. These two aspects are critical, because the aero-elastic coupling and flow induced vibrations are not negligible for high aspect ratio rotors. In this work, we investigate the aeroelastic response of a small sample fan blade, printed using PLA material. Scope of the work is to study both the structure and flow field dynamics, where strong coupling is considered on the simulation. We test the blade in two operating points, to see the aero-mechanical dynamics of the system in stall and normal operating condition. The computational fluid-structure interaction (FSI) technique is applied to simulate the coupled dynamics. The FSI solver is developed on the base of the finite element stabilized formulations proposed by Tezduyar et al. We use the ALE formulation of RBVMS-SUPS equations for the aerodynamics, the non-linear elasticity is solved with the Updated Lagrangian formulation of the equations of motion for the elastic solid. The strong coupling is made with a block-iterative algorithm, including the Jacobian based stiffness method for the mesh motion.


2019 ◽  
Vol 30 (6) ◽  
pp. 2883-2911 ◽  
Author(s):  
Mohammad Ghalambaz ◽  
S.A.M. Mehryan ◽  
Muneer A. Ismael ◽  
Ali Chamkha ◽  
D. Wen

Purpose The purpose of the present paper is to model a cavity, which is equally divided vertically by a thin, flexible membrane. The membranes are inevitable components of many engineering devices such as distillation systems and fuel cells. In the present study, a cavity which is equally divided vertically by a thin, flexible membrane is model using the fluid–structure interaction (FSI) associated with a moving grid approach. Design/methodology/approach The cavity is differentially heated by a sinusoidal time-varying temperature on the left vertical wall, while the right vertical wall is cooled isothermally. There is no thermal diffusion from the upper and lower boundaries. The finite-element Galerkin technique with the aid of an arbitrary Lagrangian–Eulerian procedure is followed in the numerical procedure. The governing equations are transformed into non-dimensional forms to generalize the solution. Findings The effects of four pertinent parameters are investigated, i.e., Rayleigh number (104 = Ra = 107), elasticity modulus (5 × 1012 = ET = 1016), Prandtl number (0.7 = Pr = 200) and temperature oscillation frequency (2p = f = 240p). The outcomes show that the temperature frequency does not induce a notable effect on the mean values of the Nusselt number and the deformation of the flexible membrane. The convective heat transfer and the stretching of the thin, flexible membrane become higher with a fluid of a higher Prandtl number or with a partition of a lower elasticity modulus. Originality/value The authors believe that the modeling of natural convection and heat transfer in a cavity with the deformable membrane and oscillating wall heating is a new subject and the results have not been published elsewhere.


2019 ◽  
Vol 72 (3) ◽  
pp. 285-290 ◽  
Author(s):  
Ruzhong Yan ◽  
Liaoyuan Wang ◽  
Shengze Wang

Purpose The purpose of this paper is to study the mechanical properties of aerostatic guideway taking the structural deformation into account, and further improve the calculation method of guideway. Design/methodology/approach A theoretical model of fluid-structure interaction for the numerical simulation was established and mechanical properties of the aerostatic guideway with porous restrictors were solved based on computational fluid dynamics. The deformation law of the guideway with different materials and gas-film thicknesses was revealed, and its static and dynamic characteristic curves were obtained. Findings The results indicate that ceramics as the material of guideways exhibit good applicability due to the small deformation, the quick dynamic response and the relatively light weight. The rational initial gas-film of guideway is recommended. Originality/value The present work can provide ideas for the design and optimization of aerostatic guideways. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2019-0288


2016 ◽  
Vol 20 (suppl. 1) ◽  
pp. 235-250 ◽  
Author(s):  
Zoran Markovic ◽  
Slobodan Stupar ◽  
Mirko Dinulovic ◽  
Ognjen Pekovic ◽  
Predrag Stefanovic ◽  
...  

A fuzzy approximation concept is applied in order to predict results of coupled computational structure mechanics and computational fluid dynamics while solving a problem of steady incompressible gas flow through thermally loaded rectangular thin-walled channel. Channel wall deforms into wave - type shapes depending on thermal load and fluid inlet velocity inducing the changes of fluid flow accordingly. A set of fluid - structure interaction (FSI) numerical tests have been defined by varying the values of fluid inlet velocity, temperature of inner and outer surface of the channel wall and numerical grid density. The unsteady Navier-Stokes equations are numerically solved using an element-based finite volume method and second order backward Euler discretization scheme. The structural model is solved by finite element method including geometric and material nonlinearities. The implicit two-way iterative code coupling, partitioned solution approach, were used while solving these numerical tests. Results of numerical analysis indicate that gravity and pressure distribution inside the channel contributes to triggering the shape of deformation. In the inverse problem, the results of FSI numerical simulations formed a database of input variables for development fuzzy logic based models considering downstream pressure drop and maximum stresses as the objective functions. Developed fuzzy models predicted targeting results within a reasonable accuracy limit at lower computation cost compared to series of FSI numerical calculations. Smaller relative difference were obtained when calculating the values of pressure drop then maximal stresses indicating that transfer function influence on output values have to be additionally investigated.


2019 ◽  
Vol 72 (3) ◽  
pp. 397-403
Author(s):  
Dongju Chen ◽  
You Zhao ◽  
Chunqing Zha ◽  
Jingfang Liu

Purpose The purpose of this paper is to investigate the effect of fluid–structure interaction in micro-scale on the performance of the hydrostatic spindle and improve the analysis precision of the dynamic performance of hydrostatic spindle. Design/methodology/approach Dynamic analysis of hydrostatic spindle before and after fluid–structure interaction is carried out according to stiffness and damping performance of the bearing, which demonstrates that the natural frequency and peak response of the spindle are increased in the micro-scale. Findings It is concluded from the simulation and experimental results that there is micro-scale effect in the actual operation of the spindle system and slippage exists in the oil film flow. The error between the modal detection result and the theoretical value is within 10 per cent, which also verifies the correctness of the above conclusions. Originality/value This paper analyzes the changes of the bearing performance parameters at macro- and micro-scale, which present the influence of the static and dynamic performance of the spindle in the micro-scale.


2019 ◽  
Vol 71 (4) ◽  
pp. 620-627
Author(s):  
Qiang Li ◽  
Yujun Wang ◽  
Shuo Zhang ◽  
Wei-Wei Xu ◽  
Zengli Wang ◽  
...  

Purpose Surface texturing has been proven as an effective means of contact performance enhancement. However, limited work has been done to investigate the regular relationship to solve the multi-parameters problem of textures, and inertia effect and elastic deformation were seldom considered together in previous optimization work. This paper aims to quantitatively obtain the relationship between the textured depth and liquid film thickness and find the effect of deformation on the optimal textured height ratio in elastic parallel sliders. Design/methodology/approach Numerical models of hydrodynamic lubrication are established based on the computational fluid dynamic method. Elastic deformation is considered through fluid–structure interaction (FSI) method. Using response surface optimization method, textured parallel sliders are optimized with maximum loading capacity as the objective. Findings The results show that the optimal height ratios are all within the range of 0.60-0.65 when textured parallel sliders are considered as rigid. After considering the effect of elastic deformation, loading capacity drops and is reduced more obviously with a decrease in the elastic moduli. The optimal height ratios are within the range of 0.60-0.63, which shows that FSI has a considerable influence on loading capacity but has no significant influence on the optimal height ratio. Originality/value The present research provides a theoretical reference for engineering application of elastic textured parallel sliders.


2019 ◽  
Vol 91 (6) ◽  
pp. 893-904 ◽  
Author(s):  
Corrado Groth ◽  
Ubaldo Cella ◽  
Emiliano Costa ◽  
Marco Evangelos Biancolini

Purpose This paper aims to present a fast and effective approach to tackle complex fluid structure interaction problems that are relevant for the aeronautical design. Design/methodology/approach High fidelity computer-aided engineering models (computational fluid dynamics [CFD] and computational structural mechanics) are coupled by embedding modal shapes into the CFD solver using RBF mesh morphing. Findings The theoretical framework is first explained and its use is then demonstrated with a review of applications including both steady and unsteady cases. Different flow and structural solvers are considered to showcase the portability of the concept. Practical implications The method is flexible and can be used for the simulation of complex scenarios, including components vibrations induced by external devices, as in the case of flapping wings. Originality/value The computation mesh of the CFD model becomes parametric with respect to the modal shape and, so, capable to self-adapt to the loads exerted by the surrounding fluid both for steady and transient numerical studies.


Sign in / Sign up

Export Citation Format

Share Document