An auxiliary control aided modified sliding mode control for a PMSG based wind energy conversion system

2019 ◽  
Vol 16 (6) ◽  
pp. 725-736
Author(s):  
Shubhranshu Mohan Parida ◽  
Pravat Kumar Rout ◽  
Sanjeeb Kumar Kar

Purpose This study proposes a modified sliding mode control technique having a proportional plus integral (PI) sliding surface aided by auxiliary control applied to a wind turbine driven permanent magnet synchronous generator. This paper aims to realize real and reactive power control, keeping the voltage under the desired limit during transients. Design/methodology/approach First, a PI sliding surface type sliding mode control (PISMC) is formulated, which is capable of dragging the system to the desired state and stability. Then a saturation function-based auxiliary controller is incorporated with PISMC to enhance its performance during wind speed and system parameter variations. Findings The proposed controller can tackle the problems faced while using a PI controller and the conventional sliding mode controller (CSMC) such as lack of robustness and requirement of unnecessary large control signals to overcome the parametric uncertainties and problem of chattering. Originality/value To justify the superior performance of the proposed controller in terms of robustness, reliability and accuracy a comparative study is done with the CSMC and PI controllers. The simulations are performed using MATLAB.

Author(s):  
Moussa Labbadi ◽  
Mohamed Djemai ◽  
Sahbi Boubaker

In this article, a new dynamic non-singular terminal sliding mode control technique for a quadrotor system subjected to external disturbances is evaluated. The offered control approach is based on non-singular terminal sliding mode controller combined with proportional–integral–derivative sliding surface to improve the performance. The proposed controller is formulated using the Lyapunov theory which ensured the existence of the sliding mode surfaces in finite time. Furthermore, the chattering problem, caused by the switching position and attitude laws, has been reduced using the proposed controller. Moreover, a high-precision performance trajectory tracking can be obtained. The problem of the disturbances is addressed using the suggested controller. Simulation results show the feasibility and efficiency of the non-singular terminal sliding mode control-proportional–integral–derivative proposed approach.


Author(s):  
Moharam Habibnejad Korayem ◽  
Reza Shiri ◽  
Saeed Rafee Nekoo ◽  
Zohair Fazilati

Purpose The purpose of this paper is to propose an indirect design for sliding surface as a function of position and velocity of each joint (for mounted manipulator on base) and center of mass of mobile base which includes rotation of wheels. The aim is to control the mobile base and its mounted arms using a unified sliding surface. Design/methodology/approach A new implementation of sliding mode control has been proposed for wheeled mobile manipulators, regulation and tracking cases. In the conventional sliding mode design, the position and velocity of each coordinate are often considered as the states in the sliding surface, and consequently, the input control is found based on them. A mobile robot consisted of non-holonomic constraints, makes the definition of the sliding surface more complex and it cannot simply include the coordinates of the system. Findings Formulism of both sliding mode control and non-singular terminal sliding mode control were presented and implemented on Scout robot. The simulations were validated with experimental studies, which led to satisfactory analysis. The non-singular terminal sliding mode control actually had a better performance, as it was illustrated that at time 10 s, the error for that was only 8.4 mm, where the error for conventional sliding mode control was 11.2 mm. Originality/value This work proposes sliding mode and non-singular terminal sliding mode control structure for wheeled mobile robot with a sliding surface including state variables: center of mass of base, wheels’ rotation and arm coordinates.


Author(s):  
Zouheyr Dekali ◽  
Lotfi Baghli ◽  
Abdelmadjid Boumediene

This work presents the theoretical and practical comparison of linear and nonlinear control laws for the direct power control of a grid-connected double fed induction generator (DFIG), based wind energy conversion system (WECS) under different operating modes. We will show the improvement brought by the super twisting based high order sliding mode control to mitigate the chattering phenomenon, due to the high switching frequency. It will also avoid the hyperlink of the controller settings to the system’s mathematical model and will reduce the sensibility to external disturbances. The overall structure of the proposed control requires the use of the DFIG simplified model with field-oriented control (FOC). This last allows an instantaneous decoupled control of the DFIG stator active and reactive power by acting on dq rotor currents (Iqr , Idr ) respectively. In the preliminary tests, a comparative study is conducted to verify the superior performance of the proposed WECS control scheme during various operating modes including the maximum power point tracking MPPT mode. The study reveals the effectiveness of each implemented control law with its advantages and drawbacks.


2013 ◽  
Vol 284-287 ◽  
pp. 2320-2324
Author(s):  
Yao Te Chang ◽  
Chih Chin Wen ◽  
Shi Wei Lin ◽  
Yat Chen Chen

Based on the sliding mode control (SMC) technique, a design of the sliding surface for the dual-excited and steam-valving control of the synchronous generators with matched and mismatched perturbations is proposed in this paper. By utilizing some constant gains designed in the sliding surface function, not only are the mismatched perturbations overcomed during the sliding mode, but also the property of asymptotical stability of the rotor angle and the voltage is achieved at the same time. Simulations have demonstrated that the control scheme is robust against the disturbances.


2019 ◽  
Vol 41 (10) ◽  
pp. 2932-2946 ◽  
Author(s):  
Majid Roohi ◽  
Mohammad-Hassan Khooban ◽  
Zahra Esfahani ◽  
Mohammad Pourmahmood Aghababa ◽  
Tomislav Dragicevic

Switching sliding mode control (SSMC) can be utilized as a robust control technique, which is appropriate for the control of highly non-linear power systems like chaotic systems. The present study proposes a switching sliding mode control technique for control and chaos suppression of non-autonomous fractional-order (FO) nonlinear power systems with uncertainties and external disturbances. In the first step, a novel fractional switching sliding surface is introduced as well as its stability analysis to the origin is demonstrated. In the second step, based on the fractional version of the Lyapunov stability theory, a robust non-singular control law is designed to ensure the convergence of the system trajectories to the proposed sliding surface. Next, the proposed SSMC approach is utilized for designing a single input switching control technique for the stabilization of a class of 3D FO chaotic power systems. In order to evaluate the effectiveness and robustness of the suggested approach in practice, two examples including control and the stabilization of FO chaotic electric motors are illustrated.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yaote Chang ◽  
Chih-Chin Wen

Based on the Lyapunov stability theorem and sliding mode control technique, a design of the nonlinear controller is proposed for the dual-excited and steam-valving control of the synchronous generators with matched and mismatched perturbations in this paper. By using some constant gains designed in the sliding surface function, the perturbations in the power system can be suppressed, and the property of asymptotical stability of the rotor angle and the voltage can be achieved at the same time.


Author(s):  
Nada Zine Laabidine ◽  
Afrae Errarhout ◽  
Chakib El Bakkali ◽  
Karim Mohammed ◽  
Badre Bossoufi

This paper aims to implement a new contribution for sliding mode control (SMC) of permanent magnet synchronous generator (PMSG) for wind systems conversion with track the maximum power point tracking (MPPT) power. The SMC is a very popular approach due to its robustness in dealing with the non-linear electrical power systems. In this work, the application of the SMC control is by using the non lineare model of the PMSG. The objective of this work is to control stator active and stator reactive power, and the voltage-frequency for a better injection into the network. The results obtained show better robustness.


Author(s):  
Habib Benbouhenni

A modified adaptive neuro-fuzzy inference system sliding mode control (ANFIS-SMC) by using two-level space vector pulse width modulation (SVPWM) for doubly fed induction generator (DFIG) is proposed in this article. ANFIS-SMC with SVPWM strategy improves the basic SMC performances, which features low stator active and reactive power and also minimize the total distortion harmonic (THD) of stator current. The computer simulation results, in Matlab, demonstrate the effectiveness of the proposed control strategy which improves the performance of the DFIG.


Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 92
Author(s):  
Youcef Belkhier ◽  
Abdelyazid Achour ◽  
Rabindra Nath Shaw ◽  
Nasim Ullah ◽  
Md. Shahariar Chowdhury ◽  
...  

Higher efficiency, predictability, and high-power density are the main advantages of a permanent magnet synchronous generator (PMSG)-based hydro turbine. However, the control of a PMSG is a nontrivial issue, because of its time-varying parameters and nonlinear dynamics. This paper suggests a novel optimal fuzzy supervisor passivity-based high order sliding-mode controller to address problems faced by conventional techniques such as PI controls in the machine side. An inherent advantage of the proposed method is that the nonlinear terms are not canceled but compensated in a damped way. The proposed controller consists of two main parts: the fuzzy gain supervisor-PI controller to design the desired dynamic of the system by controlling the rotor speed, and the fuzzy gain-high order sliding-mode control to compute the controller law. The main objectives are feeding the electrical grid with active power, extracting the maximum tidal power, and regulating the reactive power and DC voltage toward their references, whatever the disturbances caused by the PMSG. The main contribution and novelty of the present work consists in the new robust fuzzy supervisory passivity-based high order sliding-mode controller, which treats the mechanical characteristics of the PMSG as a passive disturbance when designing the controller and compensates it. By doing so, the PMSG tracks the optimal speed, contrary to other controls which only take into account the electrical part. The combined high order sliding-mode controller (HSMC) and passivity-based control (PBC) resulted in a hybrid controller law which attempts to greatly enhance the robustness of the proposed approach regardless of various uncertainties. Moreover, the proposed controller was also validated using a processor in the loop (PIL) experiment using Texas Instruments (TI) Launchpad. The control strategy was tested under parameter variations and its performances were compared to the nonlinear control methods. High robustness and high efficiency were clearly illustrated by the proposed new strategy over compared methods under parameter uncertainties using MATLAB/Simulink and a PIL testing platform.


Sign in / Sign up

Export Citation Format

Share Document