Finite element method applied to modeling crosstalk problems on printed circuit boards

1989 ◽  
Vol 31 (1) ◽  
pp. 5-15 ◽  
Author(s):  
R.L. Khan ◽  
G.I. Costache
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Gharaibeh

Purpose This study aims to discuss the determination of the unknown in-plane mechanical material properties of printed circuit boards (PCBs) by correlating the results from dynamic testing and finite element (FE) models using the response surface method (RSM). Design/methodology/approach The first 10 resonant frequencies and vibratory mode shapes are measured using modal analysis with hammer testing experiment, and hence, systematically compared with finite element analysis (FEA) results. The RSM is consequently used to minimize the cumulative error between dynamic testing and FEA results by continuously modifying the FE model, to acquire material properties of PCBs. Findings Great agreement is shown when comparing FEA to measurements, the optimum in-plane material properties were identified, and hence, verified. Originality/value This paper used FEA and RSMs along with modal measurements to obtain in-plane material properties of PCBs. The methodology presented here can be easily generalized and repeated for different board designs and configurations.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 833 ◽  
Author(s):  
Thomas Glatzl ◽  
Roman Beigelbeck ◽  
Samir Cerimovic ◽  
Harald Steiner ◽  
Albert Treytl

We present finite element method (FEM) simulations of a thermal flow sensor as well as a comparison to measurement results. The thermal sensor is purely based on printed circuit board (PCB) technology, designed for heating, ventilation, and air conditioning (HVAC) systems. Design and readout method of the sensor enables the possibility to measure the flow velocity in various fluids. 2D-FEM simulations were carried out in order to predict the sensor characteristic of envisaged setups. The simulations enable a fast and easy way to evaluate the sensor’s behaviour in different fluids. The results of the FEM simulations are compared to measurements in a real environment, proving the credibility of the model.


Sign in / Sign up

Export Citation Format

Share Document