Characterisation of printed circuit boards including magnetic film using finite element analysis

Author(s):  
F. Cortial-Goutaudier ◽  
S. Hoshino ◽  
M. Iwanami ◽  
H. Tohya ◽  
Y. Saito
Author(s):  
Hojin Jeon ◽  
Myunghyun Park ◽  
Hyongwon Seo ◽  
Myunghan Kim ◽  
Yonghee Lee

Flexural behavior of printed circuit boards (PCB) is well known for the major failure mechanism under board level or product level mobile phone drop tests. This behavior induces high peeling stress between PCB and IC package. This stress causes failure including both solder joint crack and pad cratering, which leads to malfunction such as phone dead or power off. Therefore, for a more reliable mobile phone design, it is important to accurately predict behavior of the PCB. In the past, isotropic or orthogonal linear elastic model have been used for simulating PCB in finite element analysis. Also, since PCB consists of multiple layers with woven glass fiber epoxy resin composite (FR-4) and copper foils, a multilayered PCB model was developed in order to consider material properties that change along the different plies. In this paper, the isotropic elastoplastic model was employed in order to efficiently predict behavior of PCB. Tensile and flexural test of PCB were conducted initially to evaluate mechanical characteristics and obtain representative material properties. Then, simulation of flexural test was performed to develop the finite element modeling. Finally, a drop test of mobile phone adopted with PCB bare board, which did not include IC packages, was examined. Also, the strain gage was used for measuring strain of PCB. This result was compared with drop simulation results of mobile phone, which used finite element modeling suggested. In conclusion, from an industry standpoint, finite element modeling of PCB using isotropic elasoplastic model was useful and efficient.


2000 ◽  
Author(s):  
James F. Tarter

Abstract Finite element analysis has been used in conjunction with developed algorithms to analyze forced response and random vibration response of printed circuit boards. Analytical predictions have been compared to random vibration test data for model correlation and validation of the analysis methods. The described methods provide design data for predicting deflections and G levels as a function of frequency or predicting RMS levels for random excitation. These data are utilized for initiating design changes and guiding component placement. Deflection versus frequency contributions for random excitation are analyzed to identify critical design frequencies. Forced response contour plots include effects of modal coupling, modal participation factors, and system damping. These data provide a better description of the expected operating deflection shapes man a simple mode shape. All of these methods are used to improve design integrity and ensure specification compliance prior to hardware fabrication. The analyses utilize aggregate board properties, and do not currently provide data for individual components which are installed on the board.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Gharaibeh

Purpose This study aims to discuss the determination of the unknown in-plane mechanical material properties of printed circuit boards (PCBs) by correlating the results from dynamic testing and finite element (FE) models using the response surface method (RSM). Design/methodology/approach The first 10 resonant frequencies and vibratory mode shapes are measured using modal analysis with hammer testing experiment, and hence, systematically compared with finite element analysis (FEA) results. The RSM is consequently used to minimize the cumulative error between dynamic testing and FEA results by continuously modifying the FE model, to acquire material properties of PCBs. Findings Great agreement is shown when comparing FEA to measurements, the optimum in-plane material properties were identified, and hence, verified. Originality/value This paper used FEA and RSMs along with modal measurements to obtain in-plane material properties of PCBs. The methodology presented here can be easily generalized and repeated for different board designs and configurations.


Author(s):  
Avinash Shaw ◽  
Heramb Mahajan ◽  
Tasnim Hassan

Abstract Printed Circuit Heat Exchangers (PCHEs) have high thermal efficiency because of the numerous minuscule channels. These minuscule channels result in a high thermal exchange area per unit volume, making PCHE a top contender for an intermediate heat exchanger in high-temperature reactors. Thousands of minuscule channels make finite element analysis of the PCHE computationally infeasible. A two-dimensional analysis is usually performed for the PCHE core, which cannot simulate the local channel level responses reasonably because of the absence of global constraint influence. At present, there is no analysis technique available in the ASME Code or literature that is computationally efficient and suitable for engineers to estimate PCHE local responses. A novel but practical two-step analysis framework is proposed for performing PCHE analysis. In the first step, the channeled core is replaced by orthotropic solids with similar stiffness to simulate the global thermomechanical elastic responses of the PCHE. In the second step, local submodel analysis with detailed channel geometry and loading is performed using the elastic-perfectly plastic material model. The proposed two-step analysis technique provides a unique capability to estimate the channel corner responses to be used for PCHE performance assessment. This study first developed a methodology for calculating the elastic orthotropic properties of the PCHE core. Next, the two-step analysis is performed for a realistic size PCHE core, and different issues observed in the results are scrutinized and resolved. Finally, a practical finite element analysis framework for PCHEs in high-temperature nuclear service is recommended.


Sign in / Sign up

Export Citation Format

Share Document