Static calibration of transducers using Gauss-function-based approximation

1996 ◽  
Vol 45 (2) ◽  
pp. 389-393 ◽  
Author(s):  
Shi Huang ◽  
R.Z. Morawski ◽  
A. Barwicz
2020 ◽  
Vol 13 (1) ◽  
pp. 86
Author(s):  
Yi Ma ◽  
Qi Jiang ◽  
Xianting Wu ◽  
Renshan Zhu ◽  
Yan Gong ◽  
...  

Accurate monitoring of hybrid rice phenology (RP) is crucial for breeding rice cultivars and controlling fertilizing amount. The aim of this study is to monitor the exact date of hybrid rice initial heading stage (IHSDAS) based on low-altitude remote sensing data and analyze the influence factors of RP. In this study, six field experiments were conducted in Ezhou city and Lingshui city from 2016 to 2019, which involved different rice cultivars and nitrogen rates. Three low-altitude remote sensing platforms were used to collect rice canopy reflectance. Firstly, we compared the performance of normalized difference vegetation index (NDVI) and red edge chlorophyll index (CIred edge) for monitoring RP. Secondly, double logistic function (DLF), asymmetric gauss function (AGF), and symmetric gauss function (SGF) were used to fit time-series CIred edge for acquiring phenological curves (PC), the feature: maximum curvature (MC) of PC was extracted to monitor IHSDAS. Finally, we analyzed the influence of rice cultivars, N rates, and air temperature on RP. The results indicated that CIred edge was more appropriate than NDVI for monitoring RP without saturation problem. Compared with DLF and AGF, SGF could fit CIred edge without over fitting problem. MC of SGF_CIred edge from all three platforms showed good performance in monitoring IHSDAS with good robustness, R2 varied between 0.82 and 0.95, RMSE ranged from 2.31 to 3.81. In addition, the results demonstrated that high air temperature might cause a decrease of IHSDAS, and the growth process of rice was delayed when more nitrogen fertilizer was applied before IHSDAS. This study illustrated that low-altitude remote sensing technology could be used for monitoring field-scale hybrid rice IHSDAS accurately.


2014 ◽  
Vol 17 (2) ◽  
Author(s):  
Germán Bianchini ◽  
Paola Caymes Scutari

Forest fires are a major risk factor with strong impact at eco-environmental and socio- economical levels, reasons why their study and modeling are very important. However, the models frequently have a certain level of uncertainty in some input parameters given that they must be approximated or estimated, as a consequence of diverse difficulties to accurately measure the conditions of the phenomenon in real time. This has resulted in the development of several methods for the uncertainty reduction, whose trade-off between accuracy and complexity can vary significantly. The system ESS (Evolutionary- Statistical System) is a method whose aim is to reduce the uncertainty, by combining Statistical Analysis, High Performance Computing (HPC) and Parallel Evolutionary Al- gorithms (PEAs). The PEAs use several parameters that require adjustment and that determine the quality of their use. The calibration of the parameters is a crucial task for reaching a good performance and to improve the system output. This paper presents an empirical study of the parameters tuning to evaluate the effectiveness of different configurations and the impact of their use in the Forest Fires prediction.


1975 ◽  
Vol 67 (2) ◽  
pp. 257-271 ◽  
Author(s):  
A. E. Perry ◽  
C. J. Abell

Using hot-wire-anemometer dynamic-calibration methods, fully developed pipe-flow turbulence measurements have been taken in the Reynolds-number range 80 × 103 to 260 × 103. Comparisons are made with the results of previous workers, obtained using static-calibration methods. From the dynamic-calibration results, a consistent and systematic correlation for the distribution of turbulence quantities becomes evident, the resulting correlation scheme being similar to that which has previously been established for the mean flow. The correlations reported have been partly conjectured in the past by many workers but convincing experimental evidence has always been masked by the scatter in the results, no doubt caused by the difficulties associated with static-calibration methods, particularly the earlier ones. As for the mean flow, the turbulence intensity measurements appear to collapse to an inner and outer law with a region of overlap, from which deductions can be made using dimensional arguments. The long-suspected similarity of the turbulence structure and its consistency with the established mean-flow similarity appears to be confirmed by the measurements reported here.


Author(s):  
Kian Sek Tee ◽  
Mohammed Awad ◽  
Abbas Dehghani ◽  
David Moser ◽  
M. S. Zahedi

Sign in / Sign up

Export Citation Format

Share Document