Scaling laws for pipe-flow turbulence

1975 ◽  
Vol 67 (2) ◽  
pp. 257-271 ◽  
Author(s):  
A. E. Perry ◽  
C. J. Abell

Using hot-wire-anemometer dynamic-calibration methods, fully developed pipe-flow turbulence measurements have been taken in the Reynolds-number range 80 × 103 to 260 × 103. Comparisons are made with the results of previous workers, obtained using static-calibration methods. From the dynamic-calibration results, a consistent and systematic correlation for the distribution of turbulence quantities becomes evident, the resulting correlation scheme being similar to that which has previously been established for the mean flow. The correlations reported have been partly conjectured in the past by many workers but convincing experimental evidence has always been masked by the scatter in the results, no doubt caused by the difficulties associated with static-calibration methods, particularly the earlier ones. As for the mean flow, the turbulence intensity measurements appear to collapse to an inner and outer law with a region of overlap, from which deductions can be made using dimensional arguments. The long-suspected similarity of the turbulence structure and its consistency with the established mean-flow similarity appears to be confirmed by the measurements reported here.

1987 ◽  
Vol 177 ◽  
pp. 437-466 ◽  
Author(s):  
A. E. Perry ◽  
K. L. Lim ◽  
S. M. Henbest

The turbulence structure in zero-pressure-gradient boundary layers above smooth, rough and wavy surfaces was investigated. The mean flow, turbulence intensity and spectral data for both smooth and rough surfaces show support for the attached eddy hypothesis of Townsend (1976), the model for wall turbulence proposed by Perry & Chong (1982) and the extended version developed by Perry, Henbest & Chong (1986). Anomalies in hot-wire behaviour when measuring in the turbulent wall region of the flow were discovered and some of these have been resolved.


2002 ◽  
Vol 473 ◽  
pp. 201-210 ◽  
Author(s):  
ROBERTO VERZICCO

The effects of a sidewall with finite thermal conductivity on confined turbulent thermal convection has been investigated using direct numerical simulation. The study is motivated by the observation that the heat flowing through the lateral wall is not always negligible in the low-aspect-ratio cells of several recent experiments. The extra heat flux modifies the temperature boundary conditions of the flow and therefore the convective heat transfer. It has been found that, for usual sidewall thicknesses, the heat travelling from the hot to the cold plates directly through the sidewall is negligible owing to the additional heat exchanged at the lateral fluid/wall interface. In contrast, the modified temperature boundary conditions alter the mean flow yielding significant Nusselt number corrections which, in the low Rayleigh number range, can change the exponent of the Nu vs. Ra power law by 10%.


2018 ◽  
Vol 40 ◽  
pp. 05039
Author(s):  
Priscilla Williams ◽  
Vesselina Roussinova ◽  
Ram Balachandar

This paper focuses on the turbulence structure in a non-uniform, gradually varied, sub-critical open channel flow (OCF) on a rough bed. The flow field is analysed under accelerating, near-uniform and decelerating conditions. Information for the flow and turbulence parameters was obtained at multiple sections and planes using two different techniques: two-component laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). Different outer region velocity scaling methods were explored for evaluation of the local friction velocity. Analysis of the mean velocity profiles showed that the overlap layer exists for all flow cases. The outer layer of the decelerated velocity profile was strongly affected by the pressure gradient, where a large wake was noted. Due to the prevailing nature of the experimental setup it was found that the time-averaged flow quantities do not attained equilibrium conditions and the flow is spatially heterogeneous. The roughness generally increases the friction velocity and its effect was stronger than the effect of the pressure gradient. It was found that for the decelerated flow section over a rough bed, the mean flow and turbulence intensities were affected throughout the flow depth. The flow features presented in this study can be used to develop a model for simulating flow over a block ramp. The effect of the non-uniformity and roughness on turbulence intensities and Reynolds shear stresses was further investigated.


2002 ◽  
Vol 461 ◽  
pp. 61-91 ◽  
Author(s):  
A. E. PERRY ◽  
IVAN MARUSIC ◽  
M. B. JONES

A new approach to the classic closure problem for turbulent boundary layers is presented. This involves, first, using the well-known mean-flow scaling laws such as the log law of the wall and the law of the wake of Coles (1956) together with the mean continuity and the mean momentum differential and integral equations. The important parameters governing the flow in the general non-equilibrium case are identified and are used for establishing a framework for closure. Initially closure is achieved here empirically and the potential for achieving closure in the future using the wall-wake attached eddy model of Perry & Marusic (1995) is outlined. Comparisons are made with experiments covering adverse-pressure-gradient flows in relaxing and developing states and flows approaching equilibrium sink flow. Mean velocity profiles, total shear stress and Reynolds stress profiles can be computed for different streamwise stations, given an initial upstream mean velocity profile and the streamwise variation of free-stream velocity. The attached eddy model of Perry & Marusic (1995) can then be utilized, with some refinement, to compute the remaining unknown quantities such as Reynolds normal stresses and associated spectra and cross-power spectra in the fully turbulent part of the flow.


2015 ◽  
Vol 782 ◽  
pp. 333-355 ◽  
Author(s):  
Maarten van Reeuwijk ◽  
John Craske

We discuss energetic restrictions on the entrainment coefficient${\it\alpha}$for axisymmetric jets and plumes. The resulting entrainment relation includes contributions from the mean flow, turbulence and pressure, fundamentally linking${\it\alpha}$to the production of turbulence kinetic energy, the plume Richardson number$\mathit{Ri}$and the profile coefficients associated with the shape of the buoyancy and velocity profiles. This entrainment relation generalises the work by Kaminskiet al. (J. Fluid Mech., vol. 526, 2005, pp. 361–376) and Fox (J. Geophys. Res., vol. 75, 1970, pp. 6818–6835). The energetic viewpoint provides a unified framework with which to analyse the classical entrainment models implied by the plume theories of Mortonet al.(Proc. R. Soc. Lond.A, vol. 234, 1955, pp. 1–23) and Priestley & Ball (Q. J. R. Meteorol. Soc., vol. 81, 1954, pp. 144–157). Data for pure jets and plumes in unstratified environments indicate that to first order the physics is captured by the Priestley and Ball entrainment model, implying that (1) the profile coefficient associated with the production of turbulence kinetic energy has approximately the same value for pure plumes and jets, (2) the value of${\it\alpha}$for a pure plume is roughly a factor of$5/3$larger than for a jet and (3) the enhanced entrainment coefficient in plumes is primarily associated with the behaviour of the mean flow and not with buoyancy-enhanced turbulence. Theoretical suggestions are made on how entrainment can be systematically studied by creating constant-$\mathit{Ri}$flows in a numerical simulation or laboratory experiment.


1975 ◽  
Vol 42 (1) ◽  
pp. 51-54 ◽  
Author(s):  
N. W. Wilson ◽  
R. S. Azad

A single set of equations is developed to predict the mean flow characteristics in long circular pipes operating at laminar, transitional, and turbulent Reynolds numbers. Generally good agreement is obtained with available data in the Reynolds number range 100 < Re < 500,000.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Changwoo Kang ◽  
Kyung-Soo Yang

In the current investigation, we performed large eddy simulation (LES) of turbulent heat transfer in circular ribbed-pipe flow in order to study the effects of periodically mounted square ribs on heat transfer characteristics. The ribs were implemented on a cylindrical coordinate system by using an immersed boundary method, and dynamic subgrid-scale models were used to model Reynolds stresses and turbulent heat flux terms. A constant and uniform wall heat flux was imposed on all the solid boundaries. The Reynolds number (Re) based on the bulk velocity and pipe diameter is 24,000, and Prandtl number is fixed at Pr = 0.71. The blockage ratio (BR) based on the pipe diameter and rib height is fixed with 0.0625, while the pitch ratio based on the rib interval and rib height is varied with 2, 4, 6, 8, 10, and 18. Since the pitch ratio is the key parameter that can change flow topology, we focus on its effects on the characteristics of turbulent heat transfer. Mean flow and temperature fields are presented in the form of streamlines and contours. How the surface roughness, manifested by the wall-mounted ribs, affects the mean streamwise-velocity profile was investigated by comparing the roughness function. Local heat transfer distributions between two neighboring ribs were obtained for the pitch ratios under consideration. The flow structures related to heat transfer enhancement were identified. Friction factors and mean heat transfer enhancement factors were calculated from the mean flow and temperature fields, respectively. Furthermore, the friction and heat-transfer correlations currently available in the literature for turbulent pipe flow with surface roughness were revisited and evaluated with the LES data. A simple Nusselt number correlation is also proposed for turbulent heat transfer in ribbed pipe flow.


2005 ◽  
Vol 4 (1-2) ◽  
pp. 69-91 ◽  
Author(s):  
R. Ewert ◽  
J.W. Delfs ◽  
M. Lummer

The capability of three different perturbation approaches to tackle airframe noise problems is studied. The three approaches represent different levels of complexity and are applied to trailing edge noise problems. In the Euler-perturbation approach the linearized Euler equations without sources are used as governing acoustic equations. The sound generation and propagation is studied for several trailing edge shapes (blunt, sharp, and round trailing edges) by injecting upstream of the trailing edge test vortices into the mean-flow field. The efficiency to generate noise is determined for the trailing edge shapes by comparing the different generated sound intensities due to an initial standard vortex. Mach number scaling laws are determined varying the mean-flow Mach number. In the second simulation approach an extended acoustic analogy based on acoustic perturbation equations (APEs) is applied to simulate trailing edge noise of a flat plate. The acoustic source terms are computed from a synthetic turbulent velocity model. Furthermore, the far field is computed via additional Kirchhoff extrapolation. In the third approach the sources of the extended acoustic analogy are computed from a Large Eddy Simulation (LES) of the compressible flow problem. The directivities due to a modeled and a LES based source, respectively, compare qualitatively well in the near field. In the far field the asymptotic directivities from the Kirchhoff extrapolation agree very well with the analytical solution of Howe. Furthermore, the sound pressure spectra can be shown to have similar shape and magnitude for the last two approaches.


1979 ◽  
Vol 92 (2) ◽  
pp. 269-301 ◽  
Author(s):  
R. E. Britter ◽  
J. C. R. Hunt ◽  
J. C. Mumford

The flow of grid-generated turbulence past a circular cylinder is investigated using hot-wire anemometry over a Reynolds number range from 4·25 × 103 to 2·74 × 104 and a range of intensities from 0·025 to 0·062. Measurements of the mean velocity distribution, and r.m.s. intensities and spectral energy densities of the turbulent velocity fluctuations are presented for various radial and circumferential positions relative to the cylinder, and for ratios of the cylinder radius a to the scale of the incident turbulence Lx ranging from 0·05 to 1·42. The influence of upstream conditions on the flow in the cylinder wake and its associated induced velocity fluctuations is discussed.For all measurements, detailed comparison is made with the theoretical predictions of Hunt (1973). We conclude the following. The amplification and reduction of the three components of turbulence (which occur in different senses for the different components) can be explained qualitatively in terms of the distortion by the mean flow of the turbulent vorticity and the ‘blocking’ or ‘source’ effect caused by turbulence impinging on the cylinder surface. The relative importance of the first effect over the second increases as a/Lx increases or the distance from the cylinder surface increases.Over certain ranges of the variables involved, the measurements are in quantitative agreement with the predictions of the asymptotic theory when a/Lx [Lt ] 1, a/Lx [Gt ] 1 or |k| a [Gt ] 1 (where k is the wavenumber).The incident turbulence affects the gross properties of the flow in the cylinder wake, but the associated velocity fluctuations are probably statistically independent of those in the incident flow.The dissipation of turbulent energy is greater in the straining flow near the cylinder than in the approach flow. Some estimates for this effect are proposed.


Sign in / Sign up

Export Citation Format

Share Document