Model-based emissivity correction in pyrometer temperature control of rapid thermal processing systems

1993 ◽  
Vol 6 (3) ◽  
pp. 273-276 ◽  
Author(s):  
F.Y. Sorrell ◽  
R.S. Gyurcsik
1997 ◽  
Vol 470 ◽  
Author(s):  
A. T. Fiory

ABSTRACTTemperatures for lamp-heated rapid thermal processing of wafers with various back-side films were controlled by a Lucent Technologies pyrometer which uses a/c lamp ripple to compensate for emissivity. Process temperatures for anneals of arsenic and boron implants were inferred from post-anneal sheet resistance, and for rapid thermal oxidation, from oxide thickness. Results imply temperature control accuracy of 12°C to 17°C at 3 standard deviations.


1996 ◽  
Vol 429 ◽  
Author(s):  
Binh Nguyenphu ◽  
Minseok Oh ◽  
Anthony T. Fiory

AbstractCurrent trends of silicon integrated circuit manufacturing demand better temperature control in various thermal processing steps. Rapid thermal processing (RTP) has become a key technique because its single wafer process can accommodate the reduced thermal budget requirements arising from shrinking the dimensions of devices and the trend to larger wafers. However, temperature control by conventional infrared pyrometry, which is highly dependent on wafer back side conditions, is insufficiently accurate for upcoming technologies. Lucent Technologies Inc., formerly known as AT&T Microelectronics and AT&T Bell Laboratories, has developed a powerful real-time pyrometry technique using the A/C ripple signal from heating lamps for in-situ temperature measurement. Temperature and electrical data from device wafers have been passively collected by ripple pyrometers in three RTP systems and analyzed. In this paper we report the statistical analysis of ripple temperature and electrical data from device wafers for a typical implant anneal process temperature range of 900 to 1000 °C.


1993 ◽  
Vol 303 ◽  
Author(s):  
Bruce Peuse ◽  
Allan Rosekrans

ABSTRACTA new method of temperature control for rapid thermal processing of silicon wafers is presented whereby in-situ wafer temperature is determined by measurement of wafer thermal expansion via an optical micrometer mechanism. The expansion measurement technique and its implementation into a rapid thermal processing system for temperature control are described. Preliminary data show the wafer to wafer temperature repeatability to be 1% (3-σ) using this technique.


Sign in / Sign up

Export Citation Format

Share Document