A learning approach of wafer temperature control in a rapid thermal processing system

2001 ◽  
Vol 14 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Jin Young Choi ◽  
Hyun Min Do
1993 ◽  
Vol 303 ◽  
Author(s):  
Bruce Peuse ◽  
Allan Rosekrans

ABSTRACTA new method of temperature control for rapid thermal processing of silicon wafers is presented whereby in-situ wafer temperature is determined by measurement of wafer thermal expansion via an optical micrometer mechanism. The expansion measurement technique and its implementation into a rapid thermal processing system for temperature control are described. Preliminary data show the wafer to wafer temperature repeatability to be 1% (3-σ) using this technique.


1988 ◽  
Vol 129 ◽  
Author(s):  
J.L. Regolini ◽  
D. Bensahel ◽  
J. Mercier ◽  
C. D'Anterroches ◽  
A. Perio

ABSTRACTIn a rapid thermal processing system working at a total pressure of a few Torr, we have obtained selective epitaxial growth of silicon at temperatures as low as 650°C. When using SiH2Cl2 (DCS) as the reactive gas, no addition of HCl is needed. Nevertheless, using SiH4 below 950°C a small amount of HCl should be added.Some kinetic aspects of the two systems, DCS/HCI/H2 and SiH4/HCl/H2, are presented and discussed. For the DCS system, we show that the rate-limiting reactions are slightly different from those commonly accepted in the literature, where the results are from systems working at atmospheric pressure or in the 20-100 Torr range.Our model is based on the main decomposition of DCS, SiH2Cl→SiHCl + HCl, instead of the widely accepted reaction SiH2Cl2→SiCl2 + H2. This is the main reason why no extra HCl is required in the DCS/H2 system to obtain full selectivity from above 1000°C down to 650°C.


2003 ◽  
Vol 125 (3) ◽  
pp. 504-511 ◽  
Author(s):  
Ching-Kong Chao ◽  
Shih-Yu Hung ◽  
Cheng-Ching Yu

The concept of rapid thermal processing has many potential applications in microelectronics manufacturing, but the details of chamber design remains an active area of research. In this work the influence of lamps radius on the thermal stresses in a wafer during the cooling process is studied in detail. Since the equations governing the present thermal-elastic system are coupled in nature, the solution for the temperature and stresses must proceed simultaneously by using a fully implicit finite difference method. After the thermal stresses are obtained, the optimum lamps radii for various heights of the chamber under the constant power ramp-down control scheme are determined based on the maximum shear stress failure criterion. The shortest cooling time that can significantly reduce the thermal budget and dopant redistribution is also predicted by applying the maximum stress control scheme. The result obtained is useful in the design of a reliable rapid thermal processor based on a more practical consideration, thermal stress.


1997 ◽  
Vol 470 ◽  
Author(s):  
A. T. Fiory

ABSTRACTTemperatures for lamp-heated rapid thermal processing of wafers with various back-side films were controlled by a Lucent Technologies pyrometer which uses a/c lamp ripple to compensate for emissivity. Process temperatures for anneals of arsenic and boron implants were inferred from post-anneal sheet resistance, and for rapid thermal oxidation, from oxide thickness. Results imply temperature control accuracy of 12°C to 17°C at 3 standard deviations.


1992 ◽  
Author(s):  
Xiao-Li Xu ◽  
Jim J. Wortman ◽  
Mehmet C. Ozturk ◽  
Furman Y. Sorrell

1996 ◽  
Vol 429 ◽  
Author(s):  
Binh Nguyenphu ◽  
Minseok Oh ◽  
Anthony T. Fiory

AbstractCurrent trends of silicon integrated circuit manufacturing demand better temperature control in various thermal processing steps. Rapid thermal processing (RTP) has become a key technique because its single wafer process can accommodate the reduced thermal budget requirements arising from shrinking the dimensions of devices and the trend to larger wafers. However, temperature control by conventional infrared pyrometry, which is highly dependent on wafer back side conditions, is insufficiently accurate for upcoming technologies. Lucent Technologies Inc., formerly known as AT&T Microelectronics and AT&T Bell Laboratories, has developed a powerful real-time pyrometry technique using the A/C ripple signal from heating lamps for in-situ temperature measurement. Temperature and electrical data from device wafers have been passively collected by ripple pyrometers in three RTP systems and analyzed. In this paper we report the statistical analysis of ripple temperature and electrical data from device wafers for a typical implant anneal process temperature range of 900 to 1000 °C.


1989 ◽  
Vol 146 ◽  
Author(s):  
Fred Ruddell ◽  
Colin Parkes ◽  
B Mervyn Armstrong ◽  
Harold S Gamble

ABSTRACTThis paper describes a LPCVD reactor which was developed for multiple sequential in-situ processing. The system is capable of rapid thermal processing in the presence of plasma stimulation and has been used for native oxide removal, plasma oxidation and silicon deposition. Polysilicon layers produced by the system are incorporated into N-P-N polysilicon emitter bipolar transistors. These devices fabricated using a sequential in-situ plasma clean-polysilicon deposition schedule exhibited uniform gains limited to that of long single crystal emitters. Devices with either plasma grown or native oxide layers below the polysilicon exhibited much higher gains. The suitability of the system for sequential and limited reaction processing has been established.


Sign in / Sign up

Export Citation Format

Share Document