scholarly journals Sinusoidal dither in a relay feedback system

Author(s):  
L. H. Lim ◽  
A. P. Loh
Author(s):  
Takeshi Mizuno ◽  
Minoru Takeuchi ◽  
Yuji Ishino ◽  
Masaya Takasaki

Relay feedback was applied to measuring mass even under weightless conditions. A measurement object is driven by a force-output actuator. The motion of the object is controlled by a relay feedback system. The used relay element has dead zone and switches force acting on the object in relation to the position of the measurement object. The mass of the object is determined from the time interval measurement of the on-state and off-state periods. An apparatus was developed for experimental study. It uses a voice coil motor as an actuator, and a pair of photo interrupters for detecting the switching positions. The effects of system parameters on measurement accuracy were studied experimentally. Under the tuned conditions, the measurement errors were within 0.2[%]. Measurement on a base moving freely was also carried out.


2001 ◽  
Vol 11 (04) ◽  
pp. 1121-1140 ◽  
Author(s):  
MARIO DI BERNARDO ◽  
KARL HENRIK JOHANSSON ◽  
FRANCESCO VASCA

This paper is concerned with the bifurcation analysis of linear dynamical systems with relay feedback. The emphasis is on the bifurcations of the system periodic solutions and their symmetry. It is shown that, despite what has been conjectured in the literature, a symmetric and unforced relay feedback system can exhibit asymmetric periodic solutions. Moreover, the occurrence of periodic solutions characterized by one or more sections lying within the system discontinuity set is outlined. The mechanisms underlying their formation are carefully studied and shown to be due to an interesting, novel class of local bifurcations.


2006 ◽  
Vol 17 (2) ◽  
pp. 85-108 ◽  
Author(s):  
A. Colombo ◽  
M. di Bernardo ◽  
S.J. Hogan ◽  
P. Kowalczyk

2010 ◽  
Vol 49 (17) ◽  
pp. 8016-8020 ◽  
Author(s):  
Jietae Lee ◽  
Su Whan Sung ◽  
Thomas F. Edgar

Author(s):  
Oliver C. Wells ◽  
Mark E. Welland

Scanning tunneling microscopes (STM) exist in two versions. In both of these, a pointed metal tip is scanned in close proximity to the specimen surface by means of three piezos. The distance of the tip from the sample is controlled by a feedback system to give a constant tunneling current between the tip and the sample. In the low-end STM, the system has a mechanical stability and a noise level to give a vertical resolution of between 0.1 nm and 1.0 nm. The atomic resolution STM can show individual atoms on the surface of the specimen.A low-end STM has been put into the specimen chamber of a scanning electron microscope (SEM). The first objective was to investigate technological problems such as surface profiling. The second objective was for exploratory studies. This second objective has already been achieved by showing that the STM can be used to study trapping sites in SiO2.


1971 ◽  
Vol 10 (01) ◽  
pp. 16-24
Author(s):  
J. Fog Pedersen ◽  
M. Fog Pedersen ◽  
Paul Madsen

SummaryAn accurate catheter-free technique for clinical determination simultaneouslyof glomerular filtration rate and effective renal plasma flow by means of radioisotopes has been developed. The renal function is estimated by the amount of radioisotopes necessary to maintain a constant concentration in the patient’s blood. The infusion pumps are steered by a feedback system, the pumps being automatically turned on when the radiation measured over the patient’s head falls below a certain preset level and turned off when this level is again readied. 131I-iodopyracet was used for the estimation of effective renal plasma flow and125I-iothalamate estimation of the glomerular filtration rate. These clearances were compared to the conventional bladder clearances and good correlation was found between these two clearance methods (correlation coefficients 0.97 and.90 respectively). The advantages and disadvantages of this new clearance technique are discussed.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 368-371
Author(s):  
R. Soma ◽  
Y. Yamamoto

Abstract.A new method was developed for continuous isotopic estimation of human whole body CO2 rate of appearance (Ra) during non-steady state exercise. The technique consisted of a breath-by-breath measurement of 13CO2 enrichment (E) and a real-time fuzzy logic feedback system which controlled NaH13CO3 infusion rate to achieve an isotopic steady state. Ra was estimated from the isotope infusion rate and body 13CO2 enrichment which was equal to E at the isotopic steady state. During a non-steady state incremental cycle exercise (5 w/min or 10 w/min), NaH13CO3 infusion rate was successfully increased by the action of feedback controller so as to keep E constant.


2020 ◽  
pp. 28-33
Author(s):  
A. Yu. Dunaev ◽  
A. S. Baturin ◽  
V. N. Krutikov ◽  
S. P. Morozova

An improved monochromatic radiant source with spectral bandwidth of 4 nm based on supercontinuum laser and a double monochromator was included in absolute cryogenic radiometer-based facility to improve the accuracy of spectral responsivity measurement in the range 0.9–1.6 μm. The developed feedback system ensures stabilization of monochromatic radiant power with standard deviation up to 0.025 %. Radiant power that proceeds detector under test or absolute cryogenic radiometer varies from 0.1 to 1.5 mW in dependence of wavelength. The spectral power distribution of its monochromatic source for various operating mode is presented.


Sign in / Sign up

Export Citation Format

Share Document