Supercontinuum laser-based monochromatic radiant source for detector spectral responsivity characterization in the range 0.9–1.6 μm using absolute cryogenic radiometer

2020 ◽  
pp. 28-33
Author(s):  
A. Yu. Dunaev ◽  
A. S. Baturin ◽  
V. N. Krutikov ◽  
S. P. Morozova

An improved monochromatic radiant source with spectral bandwidth of 4 nm based on supercontinuum laser and a double monochromator was included in absolute cryogenic radiometer-based facility to improve the accuracy of spectral responsivity measurement in the range 0.9–1.6 μm. The developed feedback system ensures stabilization of monochromatic radiant power with standard deviation up to 0.025 %. Radiant power that proceeds detector under test or absolute cryogenic radiometer varies from 0.1 to 1.5 mW in dependence of wavelength. The spectral power distribution of its monochromatic source for various operating mode is presented.

Author(s):  
Jiaqi Wang ◽  
Jeffery C. C. Lo ◽  
S. W. Ricky Lee ◽  
Feng Yun ◽  
Mian Tao

In this study, we proposed and demonstrated an effective approach to model and predict spectral power distribution (SPD) for a phosphor-converted light emitting diode (pc-LED). For emission and excitation, broadband diffuse transmittances of 1 mm YAG:Ce phosphor plates with different concentrations were measured by a spectrophotometer. For emission, it was found that transmittance for all wavelengths was almost identical. This result indicates that emission spectrum prediction could be simplified by simulating the radiant power of the peak wavelength only. At the peak wavelength (560 nm), our simulation results, in which optical constants were calculated by the Lorenz-Mie theory, agreed well with our measurements. For excitation, a novel transmittance measurement setup based on an LED goniophotometer was proposed to obtain the absorption coefficient. By adjusting the optical parameter in our ray-tracing model to fit measured transmittances, accurate absorption coefficients were determined. Based on our calculation and measured optical parameters, we simulated the radiant power of the blue light and yellow light of commercial white LED packages. By expanding the total blue and yellow power into linear combinations of wavelengths in both regions, we successfully predicted the SPD of our LED package. Our predicted SPD has good agreement with the measured results.


2019 ◽  
Vol 52 (5) ◽  
pp. 654-674 ◽  
Author(s):  
TW Kruisselbrink ◽  
R Dangol ◽  
ALP Rosemann ◽  
EJ van Loenen

Presently, luminance distribution measurement devices, using High Dynamic Range technology, are increasingly used as they provide a lot of relevant data related to the lit environment at once. However, the accuracy of these devices can be a concern. It is expected that the accuracy would be improved by incorporating the effect of the camera spectral responsivity and the spectral power distribution of the illuminant under which the measurements are conducted. This study introduces two optimization criteria incorporating these aspects to improve the spectral match and the performance of luminance distribution measurement devices. Both criteria are tested in a theoretical model and in practical measurements using two cameras and three illuminants: LED, halogen and fluorescent. Both methodologies support the hypothesis that the conventional method to determine the luminance introduces spectral mismatches that can be limited by optimizing relative to the spectral responsivity of the camera. Additionally, substantial evidence was found, by both the theoretical model and the validation measurements, that the spectral power distribution of the illuminant also has an effect on the performance.


2021 ◽  
Vol 13 (9) ◽  
pp. 4852
Author(s):  
Jack Ngarambe ◽  
Inhan Kim ◽  
Geun Young Yun

Spectral power distribution (SPD) is an essential element that has considerable implications on circadian energy and the perception of lit environments. The present study assessed the potential influences of SPD on energy consumption (i.e., considering circadian energy), visual comfort, work performance and mood. Two lighting conditions based on light-emitting diode (LED) and organic light-emitting diode (OLED) were used as proxies for SPDs of different spectral content: dominant peak wavelength of 455 nm (LED) and 618 nm (OLED). Using measured photometric values, the circadian light (CL), melatonin suppression (MS), and circadian efficacy (CE) of the two lighting sources were estimated via a circadian-phototransduction model and compared. Additionally, twenty-six participants were asked to evaluate the said lit environments subjectively in terms of visual comfort and self-reported work performance. Regarding circadian lighting and the associated energy implications, the LED light source induced higher biological actions with relatively less energy than the OLED light source. For visual comfort, OLED lighting-based conditions were preferred to LED lighting-based conditions, while the opposite was true when considering work performance and mood. The current study adds to the on-going debate regarding human-centric lighting, particularly considering the role of SPD in energy-efficient and circadian lighting practices.


2017 ◽  
Vol 0 (1) ◽  
pp. 43-52
Author(s):  
Леонід Андрійович Назаренко ◽  
Тетяна Можаровська ◽  
Дмитро Усиченко

2018 ◽  
Vol 63 (5) ◽  
pp. 529-535 ◽  
Author(s):  
Tobias Heimpold ◽  
Frank Reifegerste ◽  
Stefan Drechsel ◽  
Jens Lienig

AbstractHyperspectral imaging (HSI) has become a sophisticated technique in modern applications such as food analyses, recycling technology, medicine, pharmacy and forensic science. It allows one to analyse both spatial and spectral information from an object. But hyperspectral cameras are still expensive due to their extended wavelength range. The development of new light-emitting diodes (LED) in the recent past enables another approach to HSI using a monochrome camera in combination with a LED-based illumination. However, such a system has a lower spectral resolution. Additionally, the growing supply of LED on the market complicates the selection of LED. In this paper, we propose a new time efficient selection method for the design process of an illumination. It chooses an optimised LED combination from an existing database to match a predefined spectral power distribution. Therefore, an algorithm is used to evaluate various LED combinations. Furthermore, the method considers the spectral behaviour of each LED in dependence of forward current and temperature of the solder point. Our method has already shown promise during the selection process for even spectral distributions which is demonstrated in the study. Additionally, we will show its potential for HSI illuminations.


2021 ◽  
Author(s):  
K. Bertin ◽  
G. Zissis ◽  
G. Salas ◽  
P.M. Raynham ◽  
A. Moutsi ◽  
...  

Stray light from commercial greenhouses is becoming a significant problem causing disruption to wildlife activity and annoyance for local residents. To quantify the amount of stray light from a typical large greenhouse the authors have modelled several lighting installations based on a range of generic horticultural light sources. The impact of the stray light is dependent on the spectral power distribution of the sources employed, the intensity and distribution. Current standards for obtrusive light from outdoor work places do not seem to be suitable when applied to greenhouses.


2019 ◽  
Vol 52 (6) ◽  
pp. 751-762
Author(s):  
W Truong ◽  
V Trinh ◽  
TQ Khanh

The circadian stimulus is an important, validated and updated metric that describes the invisible influences of light on the human circadian system explicitly and scientifically. However, an absolute spectral power distribution must be supplied for its computation, which is only measurable by an expensive and complicated spectrometer. This paper proposes an alternative circadian stimulus computation model that is identified as the function CS(z, Ev) for white light sources based on the most common and simplest parameters of illuminance Ev in lux and the chromaticity coordinate z. These parameters are well known and widely used in both colour science and lighting technology. In order to prove the accuracy and availability of the model, an internal validation was performed with the adapted method repeating split data to check the goodness of the model fit. The fitted model achieved a maximum residual of 0.058 in the circadian stimulus quantity (R2 = 0.998). An external validation with the maximum residual of 0.030 (R2 = 0.999) provided stronger evidence for the usability of the model in applications.


Sign in / Sign up

Export Citation Format

Share Document