scholarly journals Approaching Non-Disruptive Distributed Ledger Technologies via the Exchange Network Architecture

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 12379-12393 ◽  
Author(s):  
Emanuel Palm ◽  
Ulf Bodin ◽  
Olov Schelen
Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3570 ◽  
Author(s):  
Seongjoon Park ◽  
Hwangnam Kim

In this paper, we propose a scheme that implements a Distributed Ledger Technology (DLT) based on Directed Acyclic Graph (DAG) to generate, validate, and confirm the electricity transaction in Smart Grid. The convergence of the Smart Grid and distributed ledger concept has recently been introduced. Since Smart Grids require a distributed network architecture for power distribution and trading, the Distributed Ledger-based Smart Grid design is a spotlighted research domain. However, only the Blockchain-based methods, which are a type of the distributed ledger scheme, are currently either being considered or adopted in the Smart Grid. Due to computation-intensive consensus schemes such as Proof-of-Work and discrete block generation, Blockchain-based distributed ledger systems suffer from efficiency and latency issues. We propose a DAG-based distributed ledger for Smart Grids, called PowerGraph, to resolve this problem. Since a DAG-based distributed ledger does not need to generate blocks for confirmation, each transaction of the PowerGraph undergoes the validation and confirmation process individually. In addition, transactions in PowerGraph are used to keep track of the energy trade and include various types of transactions so that they can fully encompass the events in the Smart Grid network. Finally, to ensure that PowerGraph maintains a high performance, we modeled the PowerGraph performance and proposed a novel consensus algorithm that would result in the rapid confirmation of transactions. We use numerical evaluations to show that PowerGraph can accelerate the transaction processing speed by over 5 times compared to existing DAG-based DLT system.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Author(s):  
William P. Evans ◽  
Loretta Singletary ◽  
Lorie L. Sicafuse ◽  
Lisa D. Maletsky ◽  
Christopher J. Copp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document