scholarly journals Closed-Loop Control for Trajectory Tracking of a Microparticle Based on Input-to-State Stability Through an Electromagnetic Manipulation System

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 46537-46545
Author(s):  
Weicheng Ma ◽  
Min Xu ◽  
Zhixiong Zhong ◽  
Xiangpeng Li ◽  
Zhijie Huan
2013 ◽  
Vol 457-458 ◽  
pp. 1298-1302 ◽  
Author(s):  
Xuan Zuo Liu ◽  
Qiao Yun Yan ◽  
Fei Yun Tang

AbstractConsidering the influence of the dynamic characteristic of automatic guided vehicle (AGV) on trajectory tracking controlling, double closed loop control structure is proposed to realize the position/force cooperative control. The outer loop controlling uses backstepping to design corresponding position controller for kinematics model of AGV, while the inner control uses the integral sliding mode controlling. Self-adaptive controlling law is used to estimate the uncertain external interference in the driving force controller and stability of AGV trajectories tracking proof is proposed. In order to make the system achieve better control performance and prevent the occurrence of severe wobble, the hyperbolic tangent function in the control law of sliding mode control replaces the sign function to ensure a continuously smooth control input and states of the system. In the Matlab/simulink environment, tracking a given splayed trajectory generated by the S function to verify the double closed loop control structure and the effectiveness of the control algorithm proposed in this paper.


2019 ◽  
Vol 9 (7) ◽  
pp. 1311 ◽  
Author(s):  
Wojciech Kowalczyk

This paper presents control algorithms for multiple non-holonomic mobile robots moving in formation. Trajectory tracking based on linear feedback control is combined with inter-agent collision avoidance. Artificial potential functions (APF) are used to generate a repulsive component of the control. Stability analysis is based on a Lyapunov-like function. Then the presented method is extended to include a goal exchange algorithm that makes the convergence of the formation much more rapid and, in addition, reduces the number of collision avoidance interactions. The extended method is theoretically justified using a Lyapunov-like function. The controller is discontinuous but the set of discontinuity points is of zero measure. The novelty of the proposed method lies in integration of the closed-loop control for non-holonomic mobile robots with the distributed goal assignment, which is usually regarded in the literature as part of trajectory planning problem. A Lyapunov-like function joins both trajectory tracking and goal assignment analyses. It is shown that distributed goal exchange supports stability of the closed-loop control system. Moreover, robots are equipped with a reactive collision avoidance mechanism, which often does not exist in the known algorithms. The effectiveness of the presented method is illustrated by numerical simulations carried out on the large formation of robots.


2012 ◽  
Vol 60 (3) ◽  
pp. 557-579 ◽  
Author(s):  
D. Pazderski ◽  
K. Kozłowski ◽  
D.K. Waśkowicz

Abstract The paper presents the application of a smooth kinematic algorithm to control multi-body vehicle which consists of the unicyclelike tractor with three trailers. The controller takes advantage of the transverse functions and properties of the IV-order two input chained system. The derivation of the algorithm is presented in details. In order to improve the performance of the controller in the real application a selected tuning techniques are discussed. The properties of the closed-loop control system are examined based on results of numerical simulations concerning the point stabilization and trajectory tracking tasks.


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 118-LB
Author(s):  
CAROL J. LEVY ◽  
GRENYE OMALLEY ◽  
SUE A. BROWN ◽  
DAN RAGHINARU ◽  
YOGISH C. KUDVA ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 101-LB
Author(s):  
SUE A. BROWN ◽  
DAN RAGHINARU ◽  
BRUCE A. BUCKINGHAM ◽  
YOGISH C. KUDVA ◽  
LORI M. LAFFEL ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document