scholarly journals Large Scale Resource Allocation for the Internet of Things Network Based on ADMM

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 57192-57203 ◽  
Author(s):  
Yanhua He ◽  
Sunxuan Zhang ◽  
Liangrui Tang ◽  
Yun Ren
2018 ◽  
Vol 7 (3.12) ◽  
pp. 545
Author(s):  
Risabh Mishra ◽  
M Safa ◽  
Aditya Anand

Recent advances in wireless communication technologies and automobile industry have triggered a significant research interest in the field of Internet of Vehicles over the past few years.The advanced period of the Internet of Things is guiding the development of conventional Vehicular Networks to the Internet of Vehicles.In the days of Internet connectivity there is need to be in safe and problem-free environment.The Internet of Vehicles (IoV) is normally a mixing of three networks: an inter-vehicleNetwork, an intra-vehicle network, and a vehicle to vehicle network.Based on  idea of three networks combining into one, we define  Internet of Vehicles as a large-scale distributed system to wireless communication and information exchange between vehicle2X (X: vehicle, road, human and internet).It is a combined   network for supporting intelligent traffic management, intelligent dynamic information service, and intelligent vehicle control, representation of an application of the Internet of Things (IoT) technology for intelligent transportation system (ITS).  


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Federica Paganelli ◽  
David Parlanti

Current trends towards the Future Internet are envisaging the conception of novel services endowed with context-aware and autonomic capabilities to improve end users’ quality of life. The Internet of Things paradigm is expected to contribute towards this ambitious vision by proposing models and mechanisms enabling the creation of networks of “smart things” on a large scale. It is widely recognized that efficient mechanisms for discovering available resources and capabilities are required to realize such vision. The contribution of this work consists in a novel discovery service for the Internet of Things. The proposed solution adopts a peer-to-peer approach for guaranteeing scalability, robustness, and easy maintenance of the overall system. While most existing peer-to-peer discovery services proposed for the IoT support solely exact match queries on a single attribute (i.e., the object identifier), our solution can handle multiattribute and range queries. We defined a layered approach by distinguishing three main aspects: multiattribute indexing, range query support, peer-to-peer routing. We chose to adopt an over-DHT indexing scheme to guarantee ease of design and implementation principles. We report on the implementation of a Proof of Concept in a dangerous goods monitoring scenario, and, finally, we discuss test results for structural properties and query performance evaluation.


2018 ◽  
Vol 33 (6) ◽  
pp. 749-767 ◽  
Author(s):  
Seppo Leminen ◽  
Mervi Rajahonka ◽  
Mika Westerlund ◽  
Robert Wendelin

Purpose This study aims to understand their emergence and types of business models in the Internet of Things (IoT) ecosystems. Design/methodology/approach The paper builds upon a systematic literature review of IoT ecosystems and business models to construct a conceptual framework on IoT business models, and uses qualitative research methods to analyze seven industry cases. Findings The study identifies four types of IoT business models: value chain efficiency, industry collaboration, horizontal market and platform. Moreover, it discusses three evolutionary paths of new business model emergence: opening up the ecosystem for industry collaboration, replicating the solution in multiple services and return to closed ecosystem as technology matures. Research limitations/implications Identifying business models in rapidly evolving fields such as the IoT based on a small number of case studies may result in biased findings compared to large-scale surveys and globally distributed samples. However, it provides more thorough interpretations. Practical implications The study provides a framework for analyzing the types and emergence of IoT business models, and forwards the concept of “value design” as an ecosystem business model. Originality/value This paper identifies four archetypical IoT business models based on a novel framework that is independent of any specific industry, and argues that IoT business models follow an evolutionary path from closed to open, and reversely to closed ecosystems, and the value created in the networks of organizations and things will be shareable value rather than exchange value.


2013 ◽  
Vol 278-280 ◽  
pp. 2012-2015
Author(s):  
Lian Shi Lin ◽  
Qing Hu ◽  
Yu Ping Qui

The Internet of things is a massive electronic equipment with internet interconnection of large scale virtual networks, including RFID, sensor and actuator electronic devices by the internet interconnection. In order to solve internet of things architecture intelligent refrigerator key technologies, The paper had discussed the internet of things architecture intelligent refrigerator definition, characteristic as well as reference architecture, focused on analysis intelligent refrigerator information space definition, information quantification method and mobile platform equipment internet of things key technology main problems and corresponding solution ways.


2019 ◽  
Vol 1 (2) ◽  
pp. 16 ◽  
Author(s):  
Deepak Choudhary

The Internet of Things (IoT) enables the integration of data from virtual and physical worlds. It involves smart objects that can understand and react to their environment in a variety of industrial, commercial and household settings. As the IoT expands the number of connected devices, there is the potential to allow cyber-attackers into the physical world in which we live, as they seize on security holes in these new systems. New security issues arise through the heterogeneity  of  IoT  applications and devices and their large-scale deployment.


Author(s):  
Aleksandr Smuskin

The author states that the era of the Internet of Things has come. It is noted that Russian law publications do not pay sufficient attention to the practical issues of law enforcement that arise from the implementation of the Internet of Things, specifically, criminalistic research and the use of smart things by law enforcement bodies. This study a first attempt at a general criminalistic analysis of implementing the concept of the Internet of Things in Russian research publications. While analyzing the practical implementation of this concept, the author concludes that it is necessary not just to single out a smart house, a smart car or smart things as different categories, but to unite them into a system of smart environment. It is noted that the elements of the public sphere of application for the Internet of Things deserve separate studies, while this article will only focus on everyday application. Modern obstacles to a large-scale implementation of the Internet of Things are identified. The criminalistic research of the Internet of Things and smart environment makes it possible to identify key systems that modern appliances form in this sphere, requirements to them, subsystems of a smart house, functions of smart cars and gadgets. It is stated that the criminalistic research of the subsystems of smart environment is possible with the help of scientific criminalistic findings in the sphere of electronic digital traces and electronic evidence. Key points of finding these traces are identified. The author methodically analyzes the kinds of criminalistically relevant information that could be obtained through the examination of sensors and the memory of smart things, a smart car and a smart house. The author also determines the functions whose analysis is vital for collecting evidentiary and orientation information. It is stated that all information from sensors and information devices is, in the end, accumulated in the management center, as well as in cloud and network services servers that work with the Internet of Things. It is stressed that all interactions with electronic digital traces in the devices that implement the concept of the Internet of Things should happen with the participation of a specialist to avoid a loss of data.


2021 ◽  
pp. 1-9
Author(s):  
Rosmalina Rosma ◽  
Yaya Suharya ◽  
Megantari Suhendar

Most people in Indonesia usually have plants at their homes, places of business and so on. Balad is a place of business, which has a minimalist garden on the second floor. The limited land owned by Balad has made business owners take advantage of the existing land conditions to raise crops on a small scale. The garden is usually planted with a variety of plants to beautify and make the gardens in Balad cool. Plants grown by business owners in order to grow properly must have adequate water consumption and adequate lighting. The provision of water or watering and lighting to plants is one of the important things to keep the plants alive. Seeing this condition, business owners must do regular watering so that these plants get sufficient water consumption. Nowadays everyone has their own preferences, the same applies to business owners in Balad, so that sometimes they are forgotten to care for plants due to limited time. Information systems on plant care based on the Internet of Things help in collecting information related to conditions such as humidity, temperature, soil fertility, and plant inspection that can be controlled via a smartphone using the internet network. Internet of Things makes use of plant owners to connect with their residence or place of business from anywhere and anytime. The remote sensor structure using Microcontroller ESP8266 is used to monitor the condition of plants in the Balad park, of course, to see conditions remotely. Designing Plant Care Information Systems based on the Internet of Things, can reduce costs and update productivity standards in maintaining small-scale plants and if needed can be developed on a large scale


Sign in / Sign up

Export Citation Format

Share Document