Technical configurations of the Internet of Things for environmental monitoring at large-scale coal-fired power plants

Author(s):  
Guoxun Zhu ◽  
Ye Tian ◽  
Yuyong Zhou ◽  
Rencai Dong
2018 ◽  
Vol 7 (3.12) ◽  
pp. 545
Author(s):  
Risabh Mishra ◽  
M Safa ◽  
Aditya Anand

Recent advances in wireless communication technologies and automobile industry have triggered a significant research interest in the field of Internet of Vehicles over the past few years.The advanced period of the Internet of Things is guiding the development of conventional Vehicular Networks to the Internet of Vehicles.In the days of Internet connectivity there is need to be in safe and problem-free environment.The Internet of Vehicles (IoV) is normally a mixing of three networks: an inter-vehicleNetwork, an intra-vehicle network, and a vehicle to vehicle network.Based on  idea of three networks combining into one, we define  Internet of Vehicles as a large-scale distributed system to wireless communication and information exchange between vehicle2X (X: vehicle, road, human and internet).It is a combined   network for supporting intelligent traffic management, intelligent dynamic information service, and intelligent vehicle control, representation of an application of the Internet of Things (IoT) technology for intelligent transportation system (ITS).  


2012 ◽  
Vol 198-199 ◽  
pp. 1755-1760 ◽  
Author(s):  
Guo Ping Zhou ◽  
Ya Nan Chen

Applying the Internet of Things (IOT) into ecological environmental monitoring is the goal of this paper. There are several advantages of the Internet of Things (IOT) applying in ecological environment monitoring. A hierarchical monitoring system is presented, including system architecture, hardware/software design, information flow and software implementation. In the end, using carbon dioxide gas in the atmosphere for experimental purposes, in data collection and analysis. Experiments showed that this system is capable of monitoring ecologica environment, which orientate the future research of forest ecosystem.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Federica Paganelli ◽  
David Parlanti

Current trends towards the Future Internet are envisaging the conception of novel services endowed with context-aware and autonomic capabilities to improve end users’ quality of life. The Internet of Things paradigm is expected to contribute towards this ambitious vision by proposing models and mechanisms enabling the creation of networks of “smart things” on a large scale. It is widely recognized that efficient mechanisms for discovering available resources and capabilities are required to realize such vision. The contribution of this work consists in a novel discovery service for the Internet of Things. The proposed solution adopts a peer-to-peer approach for guaranteeing scalability, robustness, and easy maintenance of the overall system. While most existing peer-to-peer discovery services proposed for the IoT support solely exact match queries on a single attribute (i.e., the object identifier), our solution can handle multiattribute and range queries. We defined a layered approach by distinguishing three main aspects: multiattribute indexing, range query support, peer-to-peer routing. We chose to adopt an over-DHT indexing scheme to guarantee ease of design and implementation principles. We report on the implementation of a Proof of Concept in a dangerous goods monitoring scenario, and, finally, we discuss test results for structural properties and query performance evaluation.


2018 ◽  
Vol 33 (6) ◽  
pp. 749-767 ◽  
Author(s):  
Seppo Leminen ◽  
Mervi Rajahonka ◽  
Mika Westerlund ◽  
Robert Wendelin

Purpose This study aims to understand their emergence and types of business models in the Internet of Things (IoT) ecosystems. Design/methodology/approach The paper builds upon a systematic literature review of IoT ecosystems and business models to construct a conceptual framework on IoT business models, and uses qualitative research methods to analyze seven industry cases. Findings The study identifies four types of IoT business models: value chain efficiency, industry collaboration, horizontal market and platform. Moreover, it discusses three evolutionary paths of new business model emergence: opening up the ecosystem for industry collaboration, replicating the solution in multiple services and return to closed ecosystem as technology matures. Research limitations/implications Identifying business models in rapidly evolving fields such as the IoT based on a small number of case studies may result in biased findings compared to large-scale surveys and globally distributed samples. However, it provides more thorough interpretations. Practical implications The study provides a framework for analyzing the types and emergence of IoT business models, and forwards the concept of “value design” as an ecosystem business model. Originality/value This paper identifies four archetypical IoT business models based on a novel framework that is independent of any specific industry, and argues that IoT business models follow an evolutionary path from closed to open, and reversely to closed ecosystems, and the value created in the networks of organizations and things will be shareable value rather than exchange value.


Author(s):  
R. Habibi ◽  
A. A. Alesheikh

Thanks to the recent advances of miniaturization and the falling costs for sensors and also communication technologies, Internet specially, the number of internet-connected things growth tremendously. Moreover, geosensors with capability of generating high spatial and temporal resolution data, measuring a vast diversity of environmental data and automated operations provide powerful abilities to environmental monitoring tasks. Geosensor nodes are intuitively heterogeneous in terms of the hardware capabilities and communication protocols to take part in the Internet of Things scenarios. Therefore, ensuring interoperability is an important step. With this respect, the focus of this paper is particularly on incorporation of geosensor networks into Internet of things through an architecture for monitoring real-time environmental data with use of OGC Sensor Web Enablement standards. This approach and its applicability is discussed in the context of an air pollution monitoring scenario.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 57192-57203 ◽  
Author(s):  
Yanhua He ◽  
Sunxuan Zhang ◽  
Liangrui Tang ◽  
Yun Ren

2013 ◽  
Vol 278-280 ◽  
pp. 2012-2015
Author(s):  
Lian Shi Lin ◽  
Qing Hu ◽  
Yu Ping Qui

The Internet of things is a massive electronic equipment with internet interconnection of large scale virtual networks, including RFID, sensor and actuator electronic devices by the internet interconnection. In order to solve internet of things architecture intelligent refrigerator key technologies, The paper had discussed the internet of things architecture intelligent refrigerator definition, characteristic as well as reference architecture, focused on analysis intelligent refrigerator information space definition, information quantification method and mobile platform equipment internet of things key technology main problems and corresponding solution ways.


2019 ◽  
Vol 1 (2) ◽  
pp. 16 ◽  
Author(s):  
Deepak Choudhary

The Internet of Things (IoT) enables the integration of data from virtual and physical worlds. It involves smart objects that can understand and react to their environment in a variety of industrial, commercial and household settings. As the IoT expands the number of connected devices, there is the potential to allow cyber-attackers into the physical world in which we live, as they seize on security holes in these new systems. New security issues arise through the heterogeneity  of  IoT  applications and devices and their large-scale deployment.


Sign in / Sign up

Export Citation Format

Share Document