scholarly journals A Deep Learning Based Multi-Block Hybrid Model for Bike-Sharing Supply-Demand Prediction

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 85826-85838 ◽  
Author(s):  
Miao Xu ◽  
Hongfei Liu ◽  
Hongbo Yang
2020 ◽  
pp. 000313482098255
Author(s):  
Michael D. Watson ◽  
Maria R. Baimas-George ◽  
Keith J. Murphy ◽  
Ryan C. Pickens ◽  
David A. Iannitti ◽  
...  

Background Neoadjuvant therapy may improve survival of patients with pancreatic adenocarcinoma; however, determining response to therapy is difficult. Artificial intelligence allows for novel analysis of images. We hypothesized that a deep learning model can predict tumor response to NAC. Methods Patients with pancreatic cancer receiving neoadjuvant therapy prior to pancreatoduodenectomy were identified between November 2009 and January 2018. The College of American Pathologists Tumor Regression Grades 0-2 were defined as pathologic response (PR) and grade 3 as no response (NR). Axial images from preoperative computed tomography scans were used to create a 5-layer convolutional neural network and LeNet deep learning model to predict PRs. The hybrid model incorporated decrease in carbohydrate antigen 19-9 (CA19-9) of 10%. Accuracy was determined by area under the curve. Results A total of 81 patients were included in the study. Patients were divided between PR (333 images) and NR (443 images). The pure model had an area under the curve (AUC) of .738 ( P < .001), whereas the hybrid model had an AUC of .785 ( P < .001). CA19-9 decrease alone was a poor predictor of response with an AUC of .564 ( P = .096). Conclusions A deep learning model can predict pathologic tumor response to neoadjuvant therapy for patients with pancreatic adenocarcinoma and the model is improved with the incorporation of decreases in serum CA19-9. Further model development is needed before clinical application.


2020 ◽  
Vol 40 (3) ◽  
pp. 1225-1232 ◽  
Author(s):  
Raheleh Hashemzehi ◽  
Seyyed Javad Seyyed Mahdavi ◽  
Maryam Kheirabadi ◽  
Seyed Reza Kamel

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yang Zhao ◽  
Zhonglu Chen

PurposeThis study explores whether a new machine learning method can more accurately predict the movement of stock prices.Design/methodology/approachThis study presents a novel hybrid deep learning model, Residual-CNN-Seq2Seq (RCSNet), to predict the trend of stock price movement. RCSNet integrates the autoregressive integrated moving average (ARIMA) model, convolutional neural network (CNN) and the sequence-to-sequence (Seq2Seq) long–short-term memory (LSTM) model.FindingsThe hybrid model is able to forecast both linear and non-linear time-series component of stock dataset. CNN and Seq2Seq LSTMs can be effectively combined for dynamic modeling of short- and long-term-dependent patterns in non-linear time series forecast. Experimental results show that the proposed model outperforms baseline models on S&P 500 index stock dataset from January 2000 to August 2016.Originality/valueThis study develops the RCSNet hybrid model to tackle the challenge by combining both linear and non-linear models. New evidence has been obtained in predicting the movement of stock market prices.


2020 ◽  
Vol 34 (01) ◽  
pp. 1079-1087
Author(s):  
An Yan ◽  
Bill Howe

Emerging transportation modes, including car-sharing, bike-sharing, and ride-hailing, are transforming urban mobility yet have been shown to reinforce socioeconomic inequity. These services rely on accurate demand prediction, but the demand data on which these models are trained reflect biases around demographics, socioeconomic conditions, and entrenched geographic patterns. To address these biases and improve fairness, we present FairST, a fairness-aware demand prediction model for spatiotemporal urban applications, with emphasis on new mobility. We use 1D (time-varying, space-constant), 2D (space-varying, time-constant) and 3D (both time- and space-varying) convolutional branches to integrate heterogeneous features, while including fairness metrics as a form of regularization to improve equity across demographic groups. We propose two spatiotemporal fairness metrics, region-based fairness gap (RFG), applicable when demographic information is provided as a constant for a region, and individual-based fairness gap (IFG), applicable when a continuous distribution of demographic information is available. Experimental results on bike share and ride share datasets show that FairST can reduce inequity in demand prediction for multiple sensitive attributes (i.e. race, age, and education level), while achieving better accuracy than even state-of-the-art fairness-oblivious methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Liu He ◽  
Tangyi Guo ◽  
Kun Tang

System resources allocation optimization through dynamic scheduling is key to improving the service level of bike-sharing. This study innovatively introduces three types of invalid demand with negative effect including waiting, transfer, and abandoning, which consists of the total demand of bike-sharing system. Through exploring the dynamic relationship among users’ travel demands, the quantity and capacity of bikes at the rental points, the records of bicycles borrowed and returned, and the vehicle scheduling schemes, a demand forecasting model for bike-sharing is established. According to the predicted bikes and the maximum capacity limit at each rental point, an optimization model of scheduling scheme is proposed to reduce the invalid demand and the total scheduling time. A two-layer dynamic coupling model with iterative feedback is obtained by combining the demand prediction model and scheduling optimization model and is then solved by Nicked Pareto Genetic Algorithm (NPGA). The proposed model is applied to a case study and the optimal solution set and corresponding Pareto front are obtained. The invalid demand is greatly reduced from 1094 to 26 by an effective scheduling of 3 rounds and 96 minutes. Empirical results show that the proposed model is able to optimize the resource allocation of bike-sharing, significantly reduce the invalid demand caused by the absence of bikes at the rental point such as waiting in a place, walking to other rental points, and giving up for other travel modes, and effectively improve the system service level.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1353
Author(s):  
Yiwei Feng ◽  
M. Asif Naeem ◽  
Farhaan Mirza ◽  
Ali Tahir

Email is the most common and effective source of communication for most enterprises and individuals. In the corporate sector the volume of email received daily is significant while timely reply of each email is important. This generates a huge amount of work for the organisation, in particular for the staff located in the help-desk role. In this paper we present a novel Smart E-mail Management System (SEMS) for handling the issue of E-mail overload. The Term Frequency-Inverse Document Frequency (TF-IDF) model was used for designing a Smart Email Client in previous research. Since TF-IDF does not consider semantics between words, the replies suggested by the model are not very accurate. In this paper we apply Document to Vector (Doc2Vec) and introduce a novel Gated Recurrent Unit Sentence to Vector (GRU-Sent2Vec), which is a hybrid model by combining GRU and Sent2Vec. Both models are more intelligent as compared to TF-IDF. We compare our results from both models with TF-IDF. The Doc2Vec model performs the best on predicting a response for a similar new incoming Email. In our case, since the dataset is too small to require a deep learning algorithm model, the GRU-Sent2Vec hybrid model cannot produce ideal results, whereas in our understanding it is a robust method for long-text prediction.


Author(s):  
Long Chen ◽  
Piyushimita Vonu Thakuriah ◽  
Konstantinos Ampountolas

AbstractAs ride-hailing services become increasingly popular, being able to accurately predict demand for such services can help operators efficiently allocate drivers to customers, and reduce idle time, improve traffic congestion, and enhance the passenger experience. This paper proposes UberNet, a deep learning convolutional neural network for short-time prediction of demand for ride-hailing services. Exploiting traditional time series approaches for this problem is challenging due to strong surges and declines in pickups, as well as spatial concentrations of demand. This leads to pickup patterns that are unevenly distributed over time and space. UberNet employs a multivariate framework that utilises a number of temporal and spatial features that have been found in the literature to explain demand for ride-hailing services. Specifically, the proposed model includes two sub-networks that aim to encode the source series of various features and decode the predicting series, respectively. To assess the performance and effectiveness of UberNet, we use 9 months of Uber pickup data in 2014 and 28 spatial and temporal features from New York City. We use a number of features suggested by the transport operations and travel behaviour research areas as being relevant to passenger demand prediction, e.g., weather, temporal factors, socioeconomic and demographics characteristics, as well as travel-to-work, built environment and social factors such as crime level, within a multivariate framework, that leads to operational and policy insights for multiple communities: the ride-hailing operator, passengers, third-part location-based service providers and revenue opportunities to drivers, and transport operators such as road traffic authorities, and public transport agencies. By comparing the performance of UberNet with several other approaches, we show that the prediction quality of the model is highly competitive. Further, Ubernet’s prediction performance is better when using economic, social and built environment features. This suggests that Ubernet is more naturally suited to including complex motivators of travel behavior in making real-time demand predictions for ride-hailing services.


Sign in / Sign up

Export Citation Format

Share Document