scholarly journals 3D Gaze Estimation for Head-Mounted Eye Tracking System With Auto-Calibration Method

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 104207-104215 ◽  
Author(s):  
Meng Liu ◽  
Youfu Li ◽  
Hai Liu
Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 543 ◽  
Author(s):  
Braiden Brousseau ◽  
Jonathan Rose ◽  
Moshe Eizenman

This paper describes a low-cost, robust, and accurate remote eye-tracking system that uses an industrial prototype smartphone with integrated infrared illumination and camera. Numerous studies have demonstrated the beneficial use of eye-tracking in domains such as neurological and neuropsychiatric testing, advertising evaluation, pilot training, and automotive safety. Remote eye-tracking on a smartphone could enable the significant growth in the deployment of applications in these domains. Our system uses a 3D gaze-estimation model that enables accurate point-of-gaze (PoG) estimation with free head and device motion. To accurately determine the input eye features (pupil center and corneal reflections), the system uses Convolutional Neural Networks (CNNs) together with a novel center-of-mass output layer. The use of CNNs improves the system’s robustness to the significant variability in the appearance of eye-images found in handheld eye trackers. The system was tested with 8 subjects with the device free to move in their hands and produced a gaze bias of 0.72°. Our hybrid approach that uses artificial illumination, a 3D gaze-estimation model, and a CNN feature extractor achieved an accuracy that is significantly (400%) better than current eye-tracking systems on smartphones that use natural illumination and machine-learning techniques to estimate the PoG.


Author(s):  
Paul A. Wetzel ◽  
Gretchen Krueger-Anderson ◽  
Christine Poprik ◽  
Peter Bascom

2010 ◽  
Vol 36 (8) ◽  
pp. 1051-1061 ◽  
Author(s):  
Chuang ZHANG ◽  
Jian-Nan CHI ◽  
Zhao-Hui ZHANG ◽  
Zhi-Liang WANG

Author(s):  
Federico Cassioli ◽  
Laura Angioletti ◽  
Michela Balconi

AbstractHuman–computer interaction (HCI) is particularly interesting because full-immersive technology may be approached differently by users, depending on the complexity of the interaction, users’ personality traits, and their motivational systems inclination. Therefore, this study investigated the relationship between psychological factors and attention towards specific tech-interactions in a smart home system (SHS). The relation between personal psychological traits and eye-tracking metrics is investigated through self-report measures [locus of control (LoC), user experience (UX), behavioral inhibition system (BIS) and behavioral activation system (BAS)] and a wearable and wireless near-infrared illumination based eye-tracking system applied to an Italian sample (n = 19). Participants were asked to activate and interact with five different tech-interaction areas with different levels of complexity (entrance, kitchen, living room, bathroom, and bedroom) in a smart home system (SHS), while their eye-gaze behavior was recorded. Data showed significant differences between a simpler interaction (entrance) and a more complex one (living room), in terms of number of fixation. Moreover, slower time to first fixation in a multifaceted interaction (bathroom), compared to simpler ones (kitchen and living room) was found. Additionally, in two interaction conditions (living room and bathroom), negative correlations were found between external LoC and fixation count, and between BAS reward responsiveness scores and fixation duration. Findings led to the identification of a two-way process, where both the complexity of the tech-interaction and subjects’ personality traits are important impacting factors on the user’s visual exploration behavior. This research contributes to understand the user responsiveness adding first insights that may help to create more human-centered technology.


Author(s):  
Bin Li ◽  
Yun Zhang ◽  
Xiujuan Zheng ◽  
Xiaoping Huang ◽  
Sheng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document