scholarly journals Novel Sliding Mode Vibration Controller With Simple Model-Free Design and Compensation for Actuator’s Uncertainty

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 4351-4363
Author(s):  
Ansei Yonezawa ◽  
Itsuro Kajiwara ◽  
Heisei Yonezawa
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoqi Song ◽  
Dezhi Xu ◽  
Weilin Yang ◽  
Yan Xia ◽  
Bin Jiang

As a kind of special motors, linear induction motors (LIM) have been an important research field for researchers. However, it gives a great velocity control challenge due to the complex nonlinearity, high coupling, and unique end effects. In this article, an improved model-free adaptive sliding-mode-constrained control method is proposed to deal with this problem dispensing with internal parameters of the LIM. Firstly, an improved compact form dynamic linearization (CFDL) technique is used to simplify the LIM plant. Besides, an antiwindup compensator is applied to handle the problem of the actuator under saturations in case during the controller design. Furthermore, the stability of the closed system is proved by Lyapunov stability method theoretically. Finally, simulation results are given to demonstrate that the proposed controller has excellent dynamic performance and stronger robustness compared with traditional PID controller.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2424
Author(s):  
Yong Yang ◽  
Yunbing Yan ◽  
Xiaowei Xu

It is difficult to model and determine the parameters of the steer-by-wire (SBW) system accurately, and the perturbation is variable with complex and changeable tire–road conditions. In order to improve the control performance of the vehicle SBW system, an adaptive fast super-twisting sliding mode control (AFST-SMC) scheme with time-delay estimation (TDE) is proposed. The proposed scheme uses TDE to acquire the lumped dynamics in a simple way and establishes a practical model-free structure. Then, a fractional order (FO) sliding mode surface and a fast super-twisting sliding mode control structure were designed on the basic super-twisting sliding mode to ensure fast convergence and high control accuracy. Since the uncertain boundary information of the actual system is unknown, a novel adaptive algorithm is proposed to regulate the control gain based on the control errors. Theoretical analysis concerning system stability is given based on the Lyapunov theory. Finally, the effectiveness of the method is verified through comparative experiments. The results show that the proposed TDE-AFST-FOSMC control scheme has the advantages of model-free, fast response and high accuracy.


2021 ◽  
Author(s):  
Manjeet Tummalapalli

This project proposes a new SCARA variant with 4 degree of freedom. The proposed variant is achieved by swapping joint 2 and joint 3 of the standard SCARA robots. An adaptive controller is defined based on the advantages and disadvantages of PD, and SMC controllers.The purpose of the project is to understand the dynamics of the variant and to track the performance for trajectories. Simulations for tracking performance are carried under linear and circular trajectories. The variant is studied over the three controllers; PD, PD-SMC and A-PD-SMC. The variant under the adaptive controller is most efficient in terms of tracking performance and the control inputs to the system. The system is simulated under high speed and with the influence of friction at the joints. The control gains are held constant for both the trajectories and hence the controller is able to perform good under changing trajectories. Due to the use of the adaptive law, the system is at the ease of implementation and since no priori knowledge if the system is needed, it is model free. Therefore, the proposed adaptive PD-SMC has proven to provide good, robust trajectory tracking.


Author(s):  
Yangchun Wei ◽  
Haoping Wang ◽  
Yang Tian

In this brief, an adaptive nonsingular terminal sliding mode observer–based adaptive integral terminal sliding mode model-free control is proposed for the trajectory tracking control of the output torque of elastomer series elastic actuator–based manipulator. Considering the tip load and its external disturbance, an elastomer series elastic actuator–based manipulator model is established. In order to realize the output torque tracking control of elastomer series elastic actuator–based manipulator, by using the characteristics of elastomer series elastic actuator, the output torque control is transformed into position control. Based on the idea of model-free control, an ultra-local model is applied to approximate the dynamic of the manipulator, and all the model information is considered as an unknown lumped disturbance. The adaptive nonsingular terminal sliding mode observer is designed to estimate the lumped disturbance, and the absolute value of the tracking error is introduced into the sliding surface to make the selection of parameters more flexible. Then, on the basis of adaptive nonsingular terminal sliding mode observer, the adaptive integral terminal sliding mode model-free control is proposed under model-free control framework. The design and analysis of both observer and controller do not rely on accurate model information. Finally, the performance of the proposed method is verified by simulation results.


Sign in / Sign up

Export Citation Format

Share Document