scholarly journals Optimizing Energy Harvesting Decode-and-Forward Relays with Decoding Energy Costs and Energy Storage

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yanxin Yao ◽  
Zhengwei Ni ◽  
Wanqiu Hu ◽  
Mehul Motani
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3783
Author(s):  
Mateusz Andrychowicz

The paper shows a method of optimizing local initiatives in the energy sector, such as energy cooperatives and energy clusters. The aim of optimization is to determine the structure of generation sources and energy storage in order to minimize energy costs. The analysis is carried out for the time horizon of one year, with an hourly increment, taking into account various RES (wind turbines (WT), photovoltaic installations (PV), and biogas power plant (BG)) and loads (residential, commercial, and industrial). Generation sources and loads are characterized by generation/demand profiles in order to take into account their variability. The optimization was carried out taking into account the technical aspects of the operation of distribution systems, such as power flows and losses, voltage levels in nodes, and power exchange with the transmission system, and economic aspects, such as capital and fixed and variable operating costs. The method was calculated by sixteen simulation scenarios using Mixed-Integer Linear Programming (MILP).


2021 ◽  
Vol 09 (11) ◽  
pp. 80-105
Author(s):  
Vinícius Cândido da Silva ◽  
André Luiz Veiga Gimenes ◽  
Miguel Edgar Morales Udaeta
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


Author(s):  
Satyanarayan Patel ◽  
Manish Kumar ◽  
Yashwant Kashyap

Present work shows waste energy (thermal/mechanical) harvesting and storage capacity in bulk lead-free ferroelectric 0.6Ba(Zr0.2Ti0.8)O3-0.4(Ba0.7Ca0.3)TiO3 (0.6BZT-0.4BCT) ceramics. The thermal energy harvesting is obtained by employing the Olsen cycle under different stress biasing, whereas mechanical energy harvesting calculated using the thermo-mechanical cycle at various temperature biasing. To estimate the energy harvesting polarization-electric field loops were measured as a function of stress and temperatures. The maximum thermal energy harvesting is obtained equal to 158 kJ/m3 when the Olsen cycle operated as 25-81 °C (at contact stress of 5 MPa) and 0.25-2 kV/mm. On the other hand, maximum mechanical energy harvesting is calculated as 158 kJ/m3 when the cycle operated as 5-160 MPa (at a constant temperature of 25 °C) and 0.25-2 kV/mm. It is found that the stress and temperature biasing are not beneficial for thermal and mechanical energy harvesting. Further, a hybrid cycle, where both stress and temperature are varied, is also studied to obtain enhanced energy harvesting. The improved energy conversion potential is found as 221 kJ/m3 when the cycle operated as 25-81 °C, 5-160 MPa and 0.25-2 kV/mm. The energy storage density varies from 43 to 66 kJ/m3 (increase in temperature: 25-81 °C) and 43 to 80 kJ/m3 (increase in stress: 5 to 160 MPa). Also, the pre-stress can be easily implemented on the materials, which improve energy storage density almost 100% by domain pining and ferroelastic switching. The results show that stress confinement can be an effective way to enhance energy storage.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3946 ◽  
Author(s):  
Chunling Peng ◽  
Fangwei Li ◽  
Huaping Liu ◽  
Guozhong Wang

A joint resource allocation algorithm to minimize the system outage probability is proposed for a decode-and-forward (DF) two-way relay network with simultaneous wireless information and power transfer (SWIPT) under a total power constraint. In this network, the two sources nodes exchange information with the help of a passive relay, which is assumed to help the two source nodes’ communication without consuming its own energy by exploiting an energy-harvesting protocol, the power splitting (PS) protocol. An optimization framework to jointly optimize power allocation (PA) at the source nodes and PS at the relay is developed. Since the formulated joint optimization problem is non-convex, the solution is developed in two steps. First, the conditionally optimal PS ratio at the relay node for a given PA ratio is explored; then, the closed-form of the optimal PA in the sense of minimizing the system outage probability with instantaneous channel state information (CSI) is derived. Analysis shows that the optimal design depends on the channel condition and the rate threshold. Simulation results are obtained to validate the analytical results. Comparison with three existing schemes shows that the proposed optimized scheme has the minimum system outage probability.


Sign in / Sign up

Export Citation Format

Share Document